

BIOLOGY I

- 1. Cell Theory
- 2. Cell Organelles
- 3. DNA and chromosomes

VIDEO

https://www.youtube.com/watch?v=40pByIwH9DU&ab_channel=TED-Ed

THE CELL THEORY

The Cell Theory is considered one of the main ideas of modern biology. It contains three main ideas:

- 1. The <u>cell</u> is the <u>basic</u> unit of <u>life</u>
- 2. All <u>organisms</u> are composed of <u>one or more</u> cells
- 3. All cells come from <u>other living cells</u>

There are two major groups of cells.

<u>PROKARYOTIC</u> CELLS

- These are a type of cell whose <u>organelles</u> are <u>not</u> <u>surrounded</u> by <u>membranes</u>. These cells do not have a nucleus, instead they generally have a single piece of circular, double stranded DNA located in the cell.
- Example: Bacteria

EUKARYOTIC CELLS

 These are cells whose <u>organelles</u> are <u>surrounded</u> by <u>membranes</u>. These cells do contain a membrane bound <u>nucleus</u> which contains the <u>DNA</u>.

Example: Plant and animal cells

ORGANELLES

Classified as being a type of eukaryotic cell, plants and animal cells contain several organelles that carry out several functions to ensure the cell's survival.

An <u>organelle</u> is a cell <u>structure</u> where functions are carried out to ensure the cell's survival. Organelles take up about 5 - 30% of a cell. The rest of the cell consists of <u>water</u>.

Cell Organelle	Function (Role)	ls it in an animal and/or plant cell?
Nucleus	Stores <u>DNA;</u> the <u>control center</u> of the cell (tells other organelles what to do)	Animal and plant cells
Mitochondria	<u>Energy</u> producers; they carry out <u>cellular</u> <u>respiration</u> (when chemical energy from the food we eat is changed into energy that our cells use) to produce energy	<u>Animal and plant cells</u>
Cell membrane	A <u>membrane</u> that separates the inside contents of the cell with the outside environment	Animal and plant cells
Cytoplasm	Jelly-like substance that contains <u>organelles</u> , <u>water</u> , and other life-supporting materials	<u>Animal and plant cells</u>

Cell Organelle	Function (Role)	ls it in an animal and/or plant cell?	
Cell wall	Tough, rigid structure that surrounds the cell membrane; <u>protects</u> the cell	<u>Plant cells</u>	
Chloroplast	Trap <u>energy</u> from the <u>sun</u> and change it into <u>chemical</u> energy	<u>Plant cells</u>	
Ribosome	Assemble <u>proteins</u> (the building blocks for structures in the cell)	<u>Animal and plant</u> <u>cells</u>	
Endoplasmic Reticulum	Network of membrane covered channels; <u>protein</u> is <u>transported</u> through here from the ribosome to the Golgi body	<u>Animal and plant</u> <u>cells</u>	

Cell Organelle	Function (Role)	Is it in an animal and/or plant cell?			
Golgi Body	<u>Sorts protein</u> and packs them into vesicles	<u>Animal and plant cells</u>			
Vacuole	<u>Storage</u> compartments (often stores waste)	<u>Animal and plant cells</u> (much larger in a plant <u>cell)</u>			
Vesicle	Carry <u>proteins</u> , <u>nutrients</u> , and <u>water</u> into, out of, and around the cell	<u>Animal and plant cells</u>			
Lysosome	<u>Break down and recycle</u> organelles	<u>Animal and plant cells</u>			

VIDEO

https://www.youtube.com/watch?v=8llzKri08kk&ab_channel=AmoebaSisters

RANK...

Rank the following organisms with how closely they match up with a human's DNA:

- Cow
- Banana
- Fruit Fly
- Dog
- Gorilla
- Mouse

WHAT PERCENTAGE OF DNA DO HUMANS SHARE WITH OTHER ORGANISMS?

Cows 80%

Bananas 60%

Fruit Flies 61%

WHAT PERCENTAGE OF DNA DO HUMANS SHARE WITH OTHER ORGANISMS?

Gorillas 98.4%

Mice 90%

Dogs 84%

VIDEO

https://www.youtube.com/watch?v=lbY122CSC5w

WHAT IS DNA?

DNA stands for <u>deoxyribonucleic acid</u>.

Stores the genetic information of an organism

 Genetic information determines how an organism <u>looks</u>, <u>functions</u>, and <u>behaves</u>

<u>A nucleotide is the basic building</u> <u>block of DNA.</u>

IA is composed of many nucleotides nked together in a specific order. The different nucleotides are an and a service

<u>A nucleotide consists of 3 parts:</u> <u>Phosphate, deoxyribose sugar,</u> <u>and a base</u>

STRUCTURE OF DNA

Two long strands shaped like a twisted ladder called a <u>double</u> <u>helix</u>

Consists of many copies of chemical building blocks called <u>nucleotides</u>. There are 4 different versions of a nucleotide and they all differ by the type of base that they have. The four types of bases are: <u>adenine</u> (A), <u>thymine</u> (T), <u>cytosine</u> (C), <u>guanine</u> (G)

•DNA sequence: The specific <u>order</u> of <u>nucleotides</u>; the "<u>code</u>" that holds the genetic information

STRUCTURE OF DNA

•One strand of DNA is going to bond with the other strand of DNA to create a double stranded structure. These strands bond by the nitrogenous bases that bond with <u>Hydrogen</u> bonds in which certain bases can only bond with certain bases.

•<u>A</u> bonds with <u>T</u>

<u>C</u> bonds with <u>G</u>

STRUCTURE OF DNA

Strand one: A C T G A T G G C T A Strand two: T G A C T A C C G A T

FUNCTION OF DNA

- Stores the genetic information of an organism
- An organism's <u>DNA</u> is stored in <u>each</u> of its <u>cells</u>
 - DNA molecules coil and compact into a condensed form called <u>chromatin</u> to fit into the cells
 - Just before reproduction: DNA condenses further into structures called <u>chromosomes</u>
 - During <u>reproduction</u>: Copies of chromosomes (and therefore DNA) are transferred to the offspring

FUNCTION OF DNA

The DNA code can be read and translated into different compounds called <u>amino acids</u>.

<u>3</u> nucleotides (called a <u>codon</u>) are needed to make one amino acid.

Amino acids can then be combined together to create different types of <u>proteins</u>. Proteins are complex molecules that are able to perform critical roles in the body.

- Example: antibodies are able to bind to foreign particles (like viruses and bacteria) to help protect the body
- Example: enzymes are able to carry out a number of chemical reactions in the body

		Т		C		A		G		
		nha	тст —	ו	TAT —]	TGT 🗕		Т	
	TTC pne		тсс	тсс	TAC TAC		TGC Cys		С	
	Т	TTA 🚽		тса	ser	TAA	stop	TGA	stop	Α
		TTG -	TTG leu		J	TAG	stop	TGG	trp	G
		стт 🚽		сст —	ו	CAT -	hia	CGT -	1	Т
с	СТС	leu	ссс		CAC -	nis	CGC	arg	С	
	СТА		CCA	pro	CAA 🚽		CGA		Α	
		CTG _		ccg 🗕	J	CAG —	gin	cgg 🗕	J	G
		ATT 🚽		ACT -	ו	AAT —]	AGT —		Т
	ATC	ile	ACC		AAC -	asn	AGC —	Jser	С	
	A	ATA		ACA	thr	AAA —	he	AGA —]	Α
		ATG	met	ACG 🗕	J	AAG 🗕	iys	AGG 🗕	arg	G
		GTT -		GCT -	ן	GAT 🗕	_	GGT 🗕	ו	Т
G	GTC		GCC		GAC -	asp	GGC		С	
	G	GTA	vai	GCA	ala	GAA -	ן אין ר	GGA	giy	Α
	GTG 🗕		GCG —	J	GAG -	giu	GGG 🗕	J	G	