Station 1

Write the complete balanced chemical reactions for the following:
a) Potassium hydroxide and hydrogen are produced when potassium metal reacts with water.
b) The reaction between magnesium metal and copper(II) sulphate.
c) Decomposition of mercury(II) oxide to its elements.

Station 1

Write the complete balanced chemical reactions for the following:
a) Potassium hydroxide and hydrogen are produced when potassium metal reacts with water.
b) The reaction between magnesium metal and copper(II) sulphate.
c) Decomposition of mercury(II) oxide to its elements.

Station 2

$2 \mathrm{Al}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{AlF}_{3}$
a) What is the molar mass of each of the compounds in the reaction above?
b) Fluorine has a purity of 78%. How many grams of the product will be formed from 56.0 g of fluorine?

Station 2

$2 \mathrm{Al}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{AlF}_{3}$
a) What is the molar mass of each of the compounds in the reaction above?
b) Fluorine has a purity of 78%. How many grams of the product will be formed from 56.0 g of fluorine?

Station 3

200.0 g of NaCl are dissolved in 100 mL of water. Calculate the molarity of the solution.

How many grams of AgCl are required to prepare 150.0 mL of 0.200 M solution?

Station 3

200.0 g of NaCl are dissolved in 100 mL of water. Calculate the molarity of the solution.

How many grams of AgCl are required to prepare 150.0 mL of 0.200 M solution?

Station 4

Aluminum and hydrochloric acid react together to form hydrogen gas and aluminum chloride. What mass of AlCl_{3} is produced when 24.5 g of Al reacts with 90.0 g of HCl ?

Station 4

Aluminum and hydrochloric acid react together to form hydrogen gas and aluminum chloride. What mass of AlCl_{3} is produced when 24.5 g of Al reacts with 90.0 g of HCl ?

Station 5

In three trials of a titration, $36.9 \mathrm{~mL}, 34.4 \mathrm{~mL}$, and 34.3 mL of 0.200 M NaOH were used to neutralize a 25.0 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
a) Write a balanced chemical reaction for this neutralization.
b) What was the average volume of NaOH used?
c) Calculate the molarity of the acid.

Station 5

In three trials of a titration, $36.9 \mathrm{~mL}, 34.4 \mathrm{~mL}$, and 34.3 mL of 0.200 M NaOH were used to neutralize a 25.0 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
a) Write a balanced chemical reaction for this neutralization.
b) What was the average volume of NaOH used?
c) Calculate the molarity of the acid.

Station 6

200.0 mL of $0.150 \mathrm{M} \mathrm{AlCl}_{3}$ is added to $200.0 \mathrm{~mL} 0.250 \mathrm{M} \mathrm{BaCl}_{2}$. Calculate the [$\left.\mathrm{Ba}^{2+}\right]$, $\left[\mathrm{Al}^{3+}\right]$ and the [$\left.\mathrm{Cl}^{-}\right]$immediately after mixing the two solutions.

Station 6

200.0 mL of $0.150 \mathrm{M} \mathrm{AlCl}_{3}$ is added to $200.0 \mathrm{~mL} 0.250 \mathrm{M} \mathrm{BaCl}_{2}$. Calculate the [$\left.\mathrm{Ba}^{2+}\right]$, $\left[\mathrm{Al}^{3+}\right]$ and the [$\left.\mathrm{Cl}^{-}\right]$immediately after mixing the two solutions.

