Write the complete balanced chemical reactions for the following:

a) Potassium hydroxide and hydrogen are produced when potassium metal reacts with water.

 $2K + 2H_2O \rightarrow 2KOH + H_2$

b) The reaction between magnesium metal and copper(II) sulphate.

$$Mg + Cusou \rightarrow Mg Sou + Cu$$

c) Decomposition of mercury(II) oxide to its elements.

$$2 HgO \rightarrow 2 Hg + O_z$$

a) What is the molar mass of each of the compounds in the reaction above?

Al :
$$27.0g/mol$$

 F_2 : $19.0 \times 2 = 38.0g/mol$
Al F_3 : $27.0 + (19.0 \times 3) = 84.0g/mol$

b) Fluorine has a purity of 78%. How many grams of the product will be formed from 56.0 g of fluorine?

$$\frac{1}{5} \text{ sample}$$

$$\frac{9}{5} \text{ purity} = \frac{\text{pure}}{\text{sample}} \times 100\%$$

$$\frac{78\%}{100\%} = \frac{x}{56.0} \times 100\%$$

$$0.78 = \frac{x}{56.0}$$

$$x = 43.7 \text{ g} \text{ F}_2 \text{ pure}$$

$$43.7 \text{ g} \text{ F}_2 \times \frac{1001}{38.0 \text{ g} \text{ F}_2} \times \frac{2 \text{ nol AIF}_3}{3 \text{ nol F}_2} \times \frac{84.0 \text{ g} \text{ AIF}_3}{1 \text{ nol AIF}_3}$$

$$= \begin{bmatrix} 64 \text{ g} \text{ AIF}_3 \end{bmatrix}$$

 $M = \frac{M_0}{L}$ 200.0 g of NaCl are dissolved in 100. mL of water. Calculate the molarity of the solution.

, 0.150 L How many grams of AgCl are required to prepare 150.0 mL of 0.200 M solution? $\mathcal{L} \times \mathcal{M} \xrightarrow{\text{ol}} \mathcal{L}$ 9 0.1500/ x 0.200mol x 143.49 1/ 1/ 1 mol = 4.30g

Aluminum and hydrochloric acid react together to form hydrogen gas and aluminum chloride. What mass of AlCl₃ is produced when 24.5 g of Al reacts with 90.0 g of HCl? $2 \text{ Al} + 6 \text{ HCl} \rightarrow 3 \text{ H}_2 + 2 \text{ AlCl}_3$

g

Excess 24.5gA1 × $\frac{1 \mod A1}{27.0 gA1}$ × $\frac{2 m}{2 m}$	101 AICI3 X 133.5 gAICI3 101 AI	= 121gAICI3
90.0gHcl × ImolHcl X - Limiting	Z Mol AICI3 X 133.59AICI3 6 Mol H CI I Mol AICI3	= 110.gaiciz

200.0 mL of 0.150 M AlCl₃ is added to **200.0 mL 0.250 M BaCl₂.** Calculate the [Ba²⁺], [Al³⁺] and the [Cl⁻] immediately after mixing the two solutions.

$$\frac{\text{Dilution}}{C_1 V_1 = C_2 V_2} = C_2 (400.0\text{nL}) = C_2 (100.0\text{nL}) = C_2 (100.0\text{n$$

