Station 1
Write the complete balanced chemical reactions for the following:
a) Potassium hydroxide and hydrogen are produced when potassium metal reacts with water.

$$
2 \mathrm{~K}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{KOH}+\mathrm{H}_{2}
$$

b) The reaction between magnesium metal and copper(II) sulphate.

$$
\mathrm{Mg}+\mathrm{CuSO}_{4} \rightarrow \mathrm{MgSO}_{4}+\mathrm{Cu}
$$

c) Decomposition of mercury(II) oxide to its elements.

$$
2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2}
$$

Station 2

a) What is the molar mass of each of the compounds in the reaction above?

$$
\begin{aligned}
& \text { Al: } 27.0 \mathrm{~g} / \mathrm{mol} \\
& F_{2}: 19.0 \times 2=\frac{38.0 \mathrm{~g} / \mathrm{mol}}{} \\
& \mathrm{AlF}_{3}: 27.0+(19.0 \times 3)=84.0 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

b) Fluorine has a purity of $\overline{7} 8 \%$. How many grams of the product will be formed from 56.0 g of fluorine?

$$
\begin{aligned}
& G \text { sample } \\
& \% \text { purity }=\frac{\text { pure }}{\text { sample }} \times 100 \% \\
& \frac{78 \%}{100 \%}=\frac{x}{56.0} \times \frac{100 \%}{100 \%} \\
& 0.78=\frac{x}{56.0} \\
& x=43.7 \mathrm{~g} \mathrm{~F}_{2} \text { pure } \\
& 43.7 \mathrm{gF}_{2} \times \frac{1 \mathrm{mo}}{38.0 \mathrm{~g} \mathrm{~F}_{2}} \times \frac{2 \mathrm{~mol} \mathrm{AlF}_{3}}{3 \mathrm{~mol} \mathrm{~F}_{2}} \times \frac{84.0 \mathrm{gAIF}}{1 \mathrm{~mol}_{3}} \\
& \mathrm{AlF}_{3}
\end{aligned}
$$

Station 3
$M=\frac{\mathrm{Mol}^{2}}{L} 200.0 \mathrm{~g}$ of NaCl are dissolved in $100 . \mathrm{mL}$ of water. Calculate the molarity f f the

$$
\begin{gathered}
\frac{200.0 \mathrm{~g}}{100 . \mathrm{mL}} \times \frac{1 \mathrm{~mol}}{58.5 \mathrm{~g}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \\
=\frac{34.2 \mathrm{mul}}{\mathrm{~L}}=34.2 \mathrm{M}
\end{gathered}
$$

g How man grams of AgCl are required to prepare 150.0 mL of 0.200 M solution?

$$
\begin{gathered}
0.1500 \mathrm{~K} \times \frac{0.200 \mathrm{mos}}{1 \mathrm{~K}} \times \frac{143.4 \mathrm{~g}}{1 \mathrm{~mol}} \\
=4.30 \mathrm{~g}
\end{gathered}
$$

Station 4
Aluminum and hydrochloric acid react together to form hydrogen gas and
g aluminum chloride. What mass of AlCl_{3} is produced when 24.5 g of Al reacts with 90.0 g of HCl ?

$$
2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 3 \mathrm{H}_{2}+2 \mathrm{AlCl}_{3}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Excess } \\
24.5 \mathrm{gal}_{\mathrm{Al}}
\end{array} \frac{1 \mathrm{molal}_{\mathrm{Al}}}{27.0 \mathrm{gal}_{\mathrm{Al}}} \times \frac{2 \mathrm{~mol} \mathrm{alcl}_{3}}{2 \mathrm{~mol}_{\mathrm{Al}}} \times \frac{133.5 \mathrm{~g} \mathrm{AlCl}_{3}}{1 \mathrm{~mol}_{\mathrm{AlCl}_{3}}}=121 \mathrm{~g} \mathrm{AlCl}_{3}
\end{aligned}
$$

In three trials of a titration, $36.9 \mathrm{~mL}, 34.4 \mathrm{~mL}$, and 34.3 mL of 0.200 M NaOH were used to neutralize a 25.0 mL sample of $\mathrm{H}_{2} \mathrm{SO}_{4}$.
a) Write a balanced chemical reaction for this neutralization.

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}
$$

b) What was the average volume of NaOH used?

$$
\begin{array}{ll}
\frac{36.9+34.4+34.3}{3}= & 35.2 \mathrm{NL} \mathrm{~L} \mathrm{aOH} \\
& \\
& 0.0352 \mathrm{~L}
\end{array}
$$

c) Calculate the molarity of the acid.
start w/ standard solution

Station 6
200.0 mL of $0.150 \mathrm{M} \mathrm{AlCl}_{3}$ is added to 200.0 mL 0.250 M BaCl . Calculate the $\left[\mathrm{Ba}^{2+}\right]$, $\left[\mathrm{Al}^{3+}\right]$ and the $[\mathrm{Cl}]$ immediately after mixing the two solutions.

$$
\begin{aligned}
& \text { Dilution } \\
& {\left[\mathrm{AlCl}_{3}\right]} \\
& c_{1} v_{1}=c_{2} v_{2} \\
& (0.150 \mathrm{M})(200.0 \mathrm{~mL})=C_{2}(400.0 \mathrm{~mL}) \\
& {\left[\mathrm{AlCl}_{3}\right]=0.0750 \mathrm{M}} \\
& {\left[\mathrm{BaCl}_{2}\right]} \\
& (0.250 \mathrm{M})(200.0 \mathrm{~mL})=C_{2} \\
& \text { (400 mL) } \\
& {\left[\mathrm{BaCl}_{2}\right]=0.125 \mathrm{M}} \\
& \text { ionization }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{Cl}^{-}\right]=0.475 \mathrm{M}}
\end{aligned}
$$

