g 1. Calculate the molar mass of each of the following:
a) NO
$30.0 \mathrm{~g} / \mathrm{mol}$
b) $\begin{aligned} \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}(2 \times 27.0)+(3 \times 32.1) & +(12 \times 16.0) \\ & =342.3 \mathrm{~g} / \mathrm{mol}\end{aligned}$
c) $\begin{aligned} & \mathrm{CH}_{3} \mathrm{COOH}(2 \times 12.0)+(4 \times 1.0)+(2 \times \\ &=60.0 \mathrm{~g} \\ & \begin{aligned} \text { Calculate the mass of the following: } \\ \text { a) } 1.00 \text { mol of } \mathrm{NH} 4 \mathrm{Cl}\end{aligned} \\ & 1.00 \mathrm{not} \times \frac{53.5 \mathrm{~g}}{\mathrm{mot}}=53.5 \mathrm{~g}\end{aligned}$
b) 0.0125 mol of XeF_{3}

$$
0.0125 \mathrm{~mol} \times \frac{188.3 \mathrm{~g}}{1 \mathrm{~mol}}=2.35375=2.35 \mathrm{~g}
$$

Mol 3. Calculate the number of moles in the following:
a) 17.0 g of $\mathrm{H}_{2} \mathrm{SO}_{4}$
b) S 1.5 g of $\mathrm{H}_{2} \mathrm{O}$

$$
1.5 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{18.0 \mathrm{~g}}=0.083_{\mathrm{mol}}=8.3 \times 10_{\mathrm{mol}}^{-2}
$$

4. The equation for the reaction of aluminum metal with fluorine gas is:

$$
\mathrm{Al}+\mathrm{F}_{2} \rightarrow \mathrm{AlF}_{3}
$$

a) What is the balanced chemical equation?

$$
2 \mathrm{Al}+3 \mathrm{~F}_{2} \rightarrow 2 \mathrm{AlF}_{3}
$$

g
b) If 116.1 g of Al reacts, how much mass of the product is made?
5. A sample of potassium chloride has 84.0% purity. If 39.8 g of this sample reacts with excess bromiregas, what volume of chlorine gas could be produced under STP conditions? Begin by

$$
\begin{aligned}
& \qquad \begin{array}{l}
7 \mathrm{KCl} \\
84 \% \text { pure } \\
39.8 \mathrm{~g} \text { sample }
\end{array} \\
& \% \mathrm{prosity}=\frac{\mathrm{pore}}{\text { sample }} \times 100 \% \\
& 84.0 \%=\frac{\mathrm{x}}{39.8 \mathrm{~g}} \times 100 \%
\end{aligned}
$$

$$
39.8 \times 0.840=\frac{x}{39.8} \times 3.8 \quad x=33.4 \text { pure }_{\mathrm{kcl}}
$$

g 6. What mass of nickel wire reacts with silver nitrate in 1.25 L of a 0.150 M solution?
7. Consider a solution containing 5.12 g of CuSO_{4} in 250.0 mL of solution.
a) What is the molar concentration of the solution?

$$
\frac{m o l}{L}=M
$$

$$
\frac{5.12 \mathrm{~g}}{250.0 \mathrm{~mL}} \times \frac{1 \mathrm{~mol}}{159.6 \mathrm{~g}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}}=\frac{0.128 \mathrm{~mol}}{1 \mathrm{~L}}=0.128 \mathrm{M}
$$

b) If 150.0 mL of water was added to the above solution, what would be the resulting molar concentration?
μ

$$
\begin{aligned}
C_{1} V_{1} & =C_{2} V_{2} \\
(0.128 \mathrm{M})(250.0 \mathrm{~mL}) & =C_{2}(400.0 \mathrm{~mL}) \\
C_{2} & =0.0800 \mathrm{M}
\end{aligned}
$$

$$
\frac{5.12 g_{\text {cusou }}}{0.400 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{159.6 \mathrm{gcuso}_{4}}=0.0802 \mathrm{M}
$$

