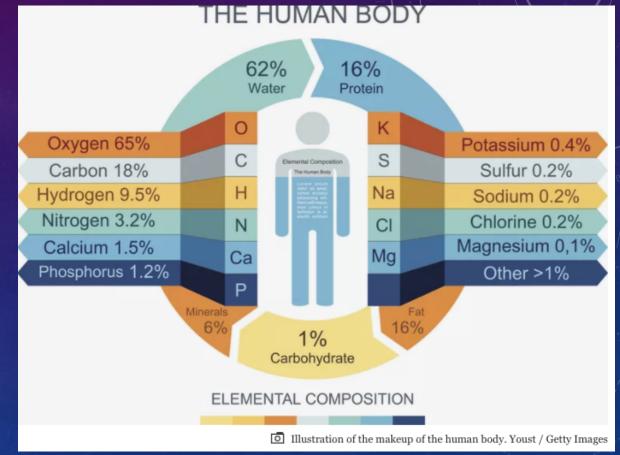

MICROSCOPIC DUST PARTICLES

HOW MANY CARBON ATOMS MAKE UP THE WIDTH OF A SINGLE HUMAN HAIR?

- 1) 5,000
- 2) 50,000
- 3) 500,000
- 4) 5,000,000

HOW MANY CARBON ATOMS MAKE UP THE WIDTH OF A SINGLE HUMAN HAIR?

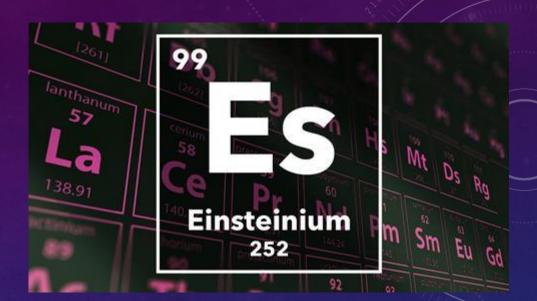
- 1) 5,000
- 2) 50,000
- 3) <u>500,000</u>
- 4) 5,000,000


https://www.youtube.com/watch?v=_INF3_30IUE

CHEMISTRY II

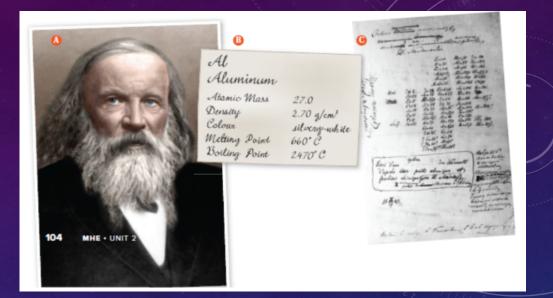
- 1. ELEMENTS
- 2. PERIODIC TABLE
- 3. PROPERTIES OF ELEMENTS

ELEMENTS

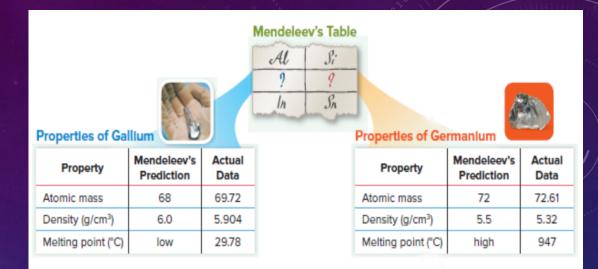

- The basic <u>building blocks</u> of <u>matter</u>
- Made up of one type of <u>atom</u> (cannot be broken down further)
- About <u>90</u> elements occur naturally (carbon, silver, oxygen)
- Some elements are <u>synthesized</u> in labs
- Have varying properties

ELEMENTS

Each element has a


Chemical <u>name</u>

- Based on Latin words, countries, names of famous scientists
- Chemical <u>symbol</u>
 - One or two letters (first letter is capitalized)
 - Synthetic or unnamed elements have placeholder names or three-letter symbols


Video: https://www.youtube.com/watch?v=fPnwBITSmgU&ab_channel=TED-Ed

1860s: Dmitri Mendeleev

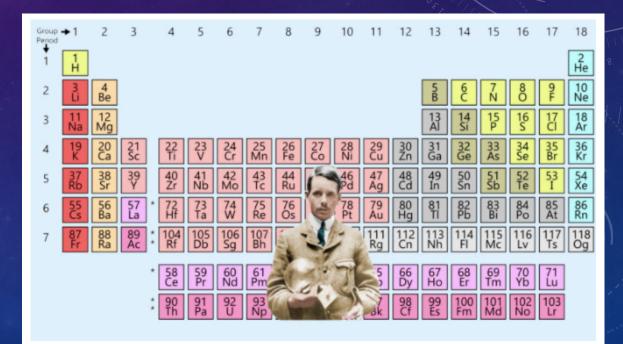
- Looked at different ways to <u>organize</u> the elements
- Wrote <u>properties</u> of elements on cards so that he could rearrange them and <u>compare</u> properties ("chemical solitaire")
- Properties included <u>atomic mass</u> (average mass of an atom of an element), <u>density</u>, and <u>melting point</u>.

Mendeleev's periodic table:

- Ordered the elements by <u>increasing</u> atomic <u>mass</u>.
- Grouped elements into "<u>families</u>" based on similar properties (density, melting point)
- Left gaps in his periodic table to <u>predict</u> the existence of elements not yet found yet
 - These missing elements would have properties similar to other elements in the same families.

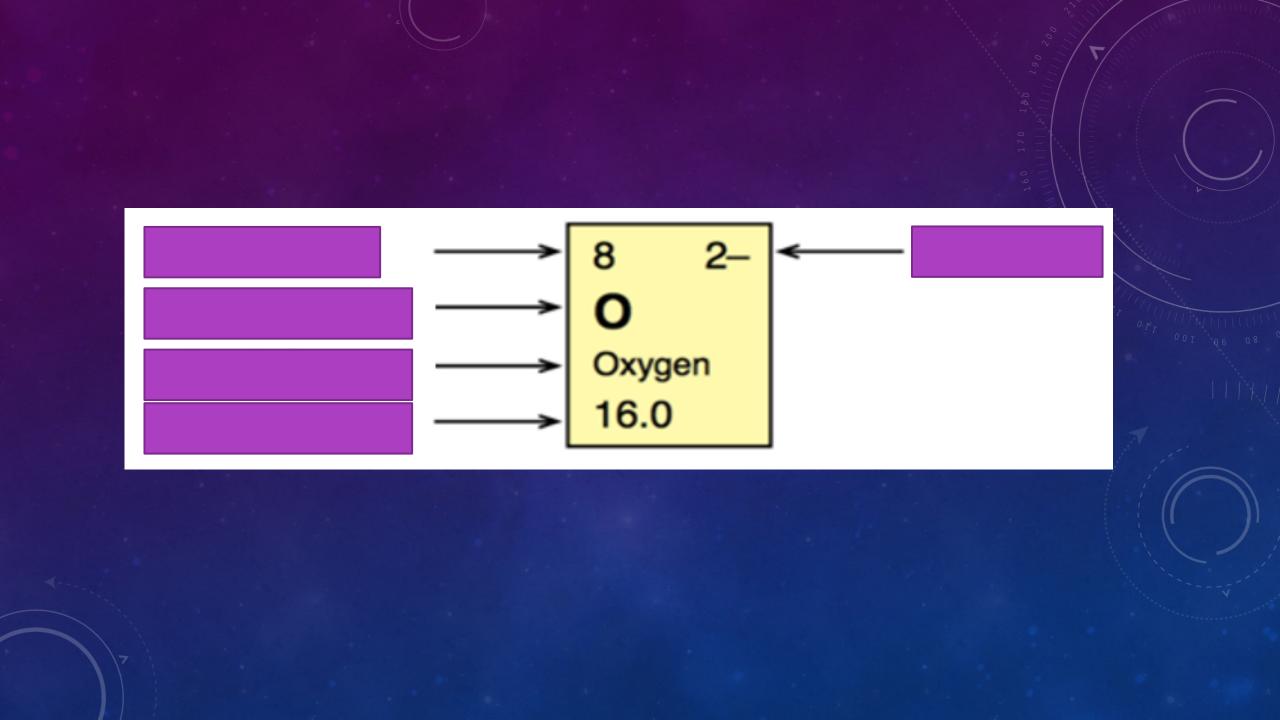
Mendeleev's periodic table was ordered by increasing atomic mass:

 Did not work perfectly – some elements were <u>out of order</u> so they would fit in a family that had similar properties


	_	_				_	_	
Series	Group I	Group II	Group III	Group IV	Group V	Group VI	Group VII	Group VIII
1	H=1							
2	LH7	Be=9.1	8=11	C+12	Ne14	O=16	F=13	
3	Ne=23	Np-24.4	Al=27	Si+28	P+31	S=32	0435.5	Fex56, Nix50.5,
4	K=39.1	Ca+40	- =64	Ti=48.1	V+91.2	Cr=52.3	Mn=55 {	
5	(Cu)=63.3	Zn+65.4	- +68	- = = 72	Ap+75	Se+79	Br+80	
6	Rb=85.4	Sr+87.5	1489	Zr=90.7	Nb+94.2	Mo+95.9		Ph=103, Ru=103.8, Pd=108, Ag=107.9.
7	(Ag)=107.3	Cd+112	In=113.7	Str-118	Sb+120.3	Te=125.2	F126.9	
8	Co+132.9	Bev137	Lev138.5	Cev141.5	Div145	-	-	
9	()	-	-	-	-	-	-,	it=193.1, Pt=194.8,
10	-	-	Yb+173.2	-	Te+182.8	W=184		Os+200, Au+196.7.
11	(Au)=198.7	Hg=200.4	TI-204.1	Pb-208.9	Bi+208	-	-	
12	-	-	-	Tb=233.4	-	U+239	-	

Modern periodic table is ordered by increasing **atomic number**.

- Henry Moseley: scientist that determined an element's atomic number (the number of protons in an atom)
- When elements are arranged according to <u>increasing</u> atomic number, the <u>elements</u> fit perfectly and do not require re-ordering


The Blindingly Brilliant but Heartbreakingly Short Career of Henry Moseley

Moseley discovered atomic numbers at the age of 26 and was dead at 27.

https://interestingengineering.com/the-blindingly-brilliantbut-heartbreakingly-short-career-of-henry-moseley

Video: https://www.youtube.com/watch?v=rz4Dd1I_fX0&ab_channel=AsapSCIENCE

We can use the information from the periodic table in order to find information about subatomic particles.

Name	Charge	Location	To find the number of particles for each elements, look at the
Proton	<u>Positive</u>	<u>Nucleus</u>	<u>Atomic number</u>
Neutron	<u>Neutral</u>	<u>Nucleus</u>	<u>Atomic mass – atomic</u> <u>number</u>
Electron	<u>Negative</u>	<u>Electron</u> <u>shells/rings</u>	<u>Atomic number</u>

METALS

On the periodic table, there are three categories shown on the periodic table:

Metal:

- <u>Shiny</u> and hard (typically)
- <u>Malleable</u> and ductile
- <u>Conducts</u> electricity and heat

1						Pe	riodic	Table (of the B	Elemen	ts						
1 1+ H Hydrogen 1_0	2			metal		Atomic Na Symbol Name	amber	* 22 4 * Ti 34	* • I an	charge(s)		13	14	15	16	17	18 2 0 He Halan 4.0
3 1+ Li Uthen 6_9	4 2+ Be heytlan 9_0			semi-me		Atomic Ma	ass	47 <u>.</u> 9	Db s	ynthetic		5 B turne 10_8	6 C Cuther 12,0	7 3- N Milingen 14_0	8 2- 0 049941 16_0	9 1- F Heatine 19_0	10 0 Ne Ne 20.2
3 11 1+ Na ^{5+due} 23.0	12 2+ Mg Hapsslan 24_3	3	4	5	6	7	8	9	10	11	12	13 3+ Al Aleman 27,0	14 Si 28.1	15 3- P People as 31.0	16 2- S Aller 32.1	17 1- Cl 04-174 35.5	18 0 Ar Arpa. 39.9
4 K Potestan 33,1	20 2+ Ca catum 40_1	21 3+ Sc Standum 45_0	22 4+ Ti 3+ 72anium 47,9	23 5+ V 4+ Vasadum 50_2	24 3+ Cr ²⁺ Chonian 52,0	25 2+ Mn 3+ Harganos 54,9	26 3+ Fe ²⁺ ha 55,8	27 2+ Co 3+ Ceast 58,9	28 2+ Ni 3+ Soul 58,7	29 2+ Cu 1+ Caper 63,5	30 2+ Zn 2h: 65,4	31 3+ Ga 440.= 63.7	32 4+ Ge ormation 72_6	33 3- As Anunio 74_9	34 2- Se Selsion 73,0	35 1- Br Dromins 73,9	36 0 Kr Kypten 83_8
37 1+ Rb Ralidon 85-5	38 2+ Sr 3tvetur 87,6	39 3+ Y ^{Y12/um} 88_9	40 4+ Zr Znostum 91_2	41 3+ Nb 5+ Notice 92_9	42 2+ Mo 3+ Highderum 35-9	43 7+ TC Tethestan (98)	44 3+ Ru ⁴⁺ Ruteriae 101-1	45 3+ Rh ⁴⁺ Rhedan 102.9	46 2+ Pd 4+ Neterian 106-4	47 1+ Ag #+* 107.9	48 2+ Cd Cederium 112_4	49 3+ In Inten 114_8	50 4+ Sn 2+ 118-7	51 3+ Sb ⁵⁺ Ardmeny 121,8	52 2- Te Nation 127,6	53 1- 	54 0 Xe Xene 131-3
55 1+ Cs Costan 132_9	56 2+ Ba Barlan 137_3	57 3+ La Lotteron 138_9	72 4+ Hf Helhian 178_5	73 5+ Ta Tetalen 180.9	74 6+ W Togelas 183_8	75 4+ Re ⁷⁺ Itestan 186_2	76 3+ Os 4+ Bunian 190_2	77 3+ r 4+ House 192.2	78 4+ Pt 2+ Helinin 195.1	79 S+ Au ¹⁺ e-H 197_0	80 2+ Hg ¹⁺ Herny 200_6	81 1+ TI 3+ Todun 204_4	82 2+ Pb 4+ Leef 207_2	83 3+ Bi 5+ 5+ 208.0	84 2+ Po 4+ Nenian (203)	85 1- At Astrine (210)	86 0 Rn Refer (222)
7 Fr Passian (223)	88 2+ Ra Padun (226)	89 3+ Ac Actilition (227)	104 Rf Rutherfordum (265)	105 Db Pukrium (268)	106 Sg Seakoglun (269)	107 Bh Debrian (270)	108 Hs Hastum (269)	109 Mt Methwrian (278)	110 Ds Jumitation (281)	111 Rg Roengenium (280)	112 Cn Copernicium (285)	113 Nh Nhoniun (286)	114 Ferrorium (289)	115 Mc Maxovium (289)	116 Lv Uvermorium (293)	117 Ts Terreastice (294)	118 Og Ogarwason (294)
			ightarrow	58 3+ Ce 4+	53 3+ Pr 4+	60 3+ Nd	61 3+ Pm	62 3+ Sm ⁴⁺	63 3+ Eu ²⁺	64 3+ Gd	65 3+ Tip 4+	66 3+ Dv	67 3+ Ho	68 3+ Er	63 3+ Tm ²⁺	70 3+ Yb 2+	71 S+
Based on	mass of C	-12 at 12	.00.	Carlum 140_1	Preventientum 140_9	Nextynium 144_2	Premethian (145)	Eemetum 150_4	Europiam 152.0	Carightan 157.3	Tettun 158.9	Dysensium 162_5	Heleium 164.9	59km 167.3	Thillion 168.9	173.0	175J0
is the ma stable or	e in parent ss of the n best know that do no	nost m isotope		90 4+ Th Totus 232,0	91 5+ Pa 4+ Potecilian 231-0	82 6+ U 4+ Uranium 238_0	\$3 5+ Np 3+ Netwich 6+ (237)	34 4+ Pu 5+ Review 5+ (244)	95 3+ Am 4+ 5+ Anekim 6+ (243)	96 3+ Cm ^{Culun} (247)	97 3+ Bk 4+ Desidun (247)	38 3+ Cf Gallonium (251)	99 3+ Es Endehign (252)	100 3+ Fm Femiun (257)	101 2+ Md 3+ Hendelerium (258)	102 2+ No 3+ Notelun (259)	103 3+ Lr Lanecium (262)

Found to the left of the <u>zigzag</u> line on the periodic table

NON-METALS

Non-metal:

- Not shiny, malleable, or <u>ductile</u>
- <u>Poor</u> conductor of electricity and heat
- Found to the <u>right</u> of the zigzag line on the periodic table
- Generally gases or brittle, dull solids.

	1						Pe	riodic	Table (of the l	Elemen	ıts						
1	1 1+ H Hydrogen 1,0	2			metal		Atomic Na Symbol Name	=	22 4 Ti 3	• lan	charge(s)		13	14	15	16	17	18 2 0 He Halan 4.0
2	3 1+ Li 0.9 6_9	4 2+ Be Perjen 9.0			semi-me		Atomic M	natura	47 <u>.</u> 9	Db s	ynthetic		5 B Rune 10_8	6 C Cuber 12,0	7 3- N Nangen 14_0	8 2- 0 01/19+1 16_0	9 1— F Hasht 19_0	10 0 Ne Neat 20.2
3	11 1+ Na ^{5relue} 23.0	12 2+ Mg Hagnaslan 24_3	3	4	5	6	7	8	9	10	11	12	13 3+ Al Aleman 27_0	14 Si 28_1	15 3- P Peoplerat 31_0	16 3- S 58- 32,1	17 1- Cl 08-4rs 35.5	18 0 Ar Arpen 33L9
4	13 1+ K Pritucium 33,1	20 2+ Ca outbut 40_1	21 3+ Sc frandum 4540	22 4+ Ti 3+ Tankon 47_3	23 5+ V 4+ Vicuation 50_9	24 3+ Cr 2+ Dronain 52,0	25 2+ Mn 3+ Harganos 54_9	26 3+ Fe 2+ IM 55.8	27 2+ Co 3+ S&9	28 2+ Ni 3+ Solut 58,7	29 2+ Cu 1+ Cupor 63_5	30 2+ Zn 2n: 65,4	31 3+ Ga 63.7	32 4+ Ge ournatium 72_6	33 3- As Anusio 74_9	34 2- Se Selaun 79,0	35 1- Br Dretins 73,9	36 0 Kr Nyskin 83_8
5	37 1+ Rb NaHeun 85.5	38 2+ Sr Svetum 87,6	39 3+ Y 100m 88_9	40 4+ Zr Zrowich 91-2	41 3+ Nb 5+ Nation 92-9	42 2+ Mo 3+ Heljadenum 95.9	43 7+ Tc Telestan (98)	44 3+ Ru 4+ Ruherica 101.1	45 3+ Rh ⁴⁺ Rhedan 102,9	46 2+ Pd 4+ Neterian 106-4	47 1+ Ag #++ 107.9	48 2+ Cd Catrium 112-4	49 3+ In His 114-8	50 4+ Sn 2+ % 118_7	51 3+ Sb 5+ Ardmeny 121,8	52 3- Te 14-ten 127.6	1 5 1 1 26 9	54 0 Xe Xeve 131-3
6	55 1+ Cs Cestan 132_9	56 2+ Ba Barlum 137_3	57 3+ La Lothanos 138_9	72 4+ Hf Helhan 178_5	73 5+ Ta Tenden 180.9	74 6+ W Toplan 183_8	75 4+ Re ⁷⁺ Ibaskin 186_2	76 3+ Os 4+ Benten 190_2	77 3+ r 4+ k4.m 192.2	78 4+ Pt 2+ Helinin 195.1	79 3+ Au ¹⁺ e+ 197_0	80 2+ Hg ¹⁺ Heray 200_6	81 1+ TI 3+ Tollin 204,4	82 2+ Pb 4+ Leef 207_2	83 3+ Bi 5+ 5+ 209.0	84 2+ Po 4+ Nemin (209)	85 1- At (210)	86 0 Rn Reder (222)
7	87 1+ Fr Pussian (223)	88 2+ Ra Pudun (226)	89 3+ Ac Atticke (227)	104 Rf Rutherlordum (265)	105 Db 5ukrium (268)	106 Sg Seskogkin (289)	107 Bh Bahlan (270)	108 Hs Hastum (269)	109 Mt Metherlan (278)	110 Ds Jumitation (281)	111 Rg Roengenium (280)	112 Cn Coperticium (285)	113 Nh Nhonian (286)	114 Filmonium (289)	115 Mc Maxovium (289)	116 Lv Livernorium (293)	117 TS Terrestite (294)	118 Og oganesson (294)
				\checkmark														
	Based on	mass of C	-12 at 12.		58 3+ Ce ⁴⁺ Cetum 140_1	59 3+ Pr 4+ Provedence 140_9	60 3+ Nd Nextynian 144_2	61 3+ Pm Promethian (145)	62 3+ Sm 4+ tematum 150,4	63 3+ Eu 2+ 5unplam 152.0	64 3+ Gd cetchian 157.3	65 3+ Tb ⁴⁺ Tettan 158.9	66 3+ Dy Dyspinatum 162_5	67 3+ Ho Ho 164.9	68 3+ Er 54im 167.3	63 3+ Tm ²⁺ Thile 168_9	70 3+ Yb 2+ Ytatium 173_0	71 3+ Lu Lunium 175J0
	is the mas stable or l	in parent ss of the n best know that do no	nost misotope		90 4+ Th Theten 232,0	91 5+ Pa 4+ Protectilium 231_0	82 6+ U 4+ Uranium 238_0	93 5+ Np 3+ Netwich 6+ (237)	94 4+ Pu 5+ Norian 5+ (244)	95 3+ Am 4+ 5+ Anatics 6+ (243)	95 3+ Cm ^{Culun} (247)	97 3+ Bk 4+ betalun (247)	38 3+ Cf Callorium (251)	99 3+ Es Endeixign (252)	100 3+ Fm Femlon (257)	101 2+ Md 3+ Itlandeletum (258)	102 2+ No 3+ Rodun (259)	103 3+ Lr Lamencium (262)

SEMI-METALS (METALLOIDS)

Semi-metals (Metalloids):

- Have physical and chemical properties of <u>both</u> metals and nonmetals
 - <u>Shiny</u> (like metals)
 - Brittle and not ductile (like non-metals)
 - Poor conductors of heat and <u>electricity</u> (like non-metals)

	1						Pe	eriodic	Tab l e (of the l	Elemen	ıts			<i></i>	ĺ.		
1	1 1+ H Hydrogen 1,0	2			metal		Atomic Na Symbol Name Atomic M	_	22 4 TI 3	- k an	charge(s)		13	14	15	16	17	18 2 0 He Helan 4.0
2	3 1+ Li Uhian 6,9	4 2+ Be Perflum 9_0			semi-me		0	natura	47.9	Db s	ynthetic	I	5 B Rene 10_8	6 C Cathon 12_0	7 3- N 14,0	8 2- 0 0ingen 16_0	9 1- F Heatine 19_0	10 0 Ne Ne: 20.2
3	11 1+ Na ^{Sedue} 23.0	12 2+ Mg Hagnaslan 24_3	3	4	5	6	7	8	9	10	11	12	13 3+ Al Aleman 27,0	14 Si 28.1	15 S- P Prospheras 31_0	16 2- S 58/ 32,1	17 1- Cl Cleres 36.5	18 0 Ar Arpse. 33L9
4	19 1+ K Prisselum 39,1	20 2+ Ca oabum 40_1	21 3+ Sc frandum 45_0	22 4+ TI 3+ 72miun 47_3	23 5+ V 4+ Vanatum 50_9	24 3+ Cr 2+ Otroniun 52,0	25 2+ Mn 3+ Harganore 54,9	26 3+ Fe ²⁺ he 55.8	27 2+ Co 3+ Ceat 58_3	28 2+ Ni 3+ Soul 58,7	29 2+ Cu 1+ Copper 63_5	30 2+ Zn ^{Zn:} 65,4	31 3+ Ga 68.7	32 4+ Ge Gomanium 72_6	33 3- As Americ 74_9	34 2- Se Senion 73,0	35 1- Br Drotins 73,9	36 0 Kr Kypin 83_8
5	37 1+ Rb Rahidum 85.5	38 2+ Sr Bretum 87,6	39 3+ Y Yhtum 88-9	40 4+ Zr Zrueium 91_2	41 3+ Nb 5+ Nistion 92_9	42 2+ Mo 3+ Itidateurum 35,9	43 7+ TC Tethnellan (98)	44 3+ Ru ⁴⁺ Patariue 101.1	45 3+ Rh ⁴⁺ Fhedian 102,9	46 2+ Pd 4+ Net-stan 106-4	47 1+ Ag #++ 107.9	48 2+ Cd Cadmium 112_4	49 3+ In Inten 114-8	50 4+ Sn 2+ Th 118-7	51 3+ Sb 5+ Ardmorp 121.8	52 3- Te 14arium 127.6	53 1- 	54 0 Xe Xeve: 131_3
6	55 1+ Cs Cester 132_9	56 2+ Ba Barlan 137_3	57 S+ La Lohanon 138_9	72 4+ Hf Hathlam 178_5	73 5+ Ta Tetalen 180.9	74 6+ W Togelas 183_8	75 4+ Re 7+ Phankum 186_2	76 3+ Os ⁴⁺ Genien 190_2	77 3+ F 4+ k4.m 192.2	78 4+ Pt 2+ Helhun 195.1	79 3+ Au ¹⁺ e+ 197_0	80 2+ Hg 1+ Hersty 200_6	81 1+ TI 3+ Thelen 204,4	82 2+ Pb 4+ Last 207_2	83 3+ Bi 5+ 5+ 209.0	84 2+ Po 4+ Netsian (203)	85 1- At Adative (210)	86 0 Rn Rater (222)
7	87 1+ Fr Pansian (223)	88 2+ Ra Radun (226)	89 3+ Ac Atticken (227)	104 Rf Rutherfordum (265)	105 Db 544/um (268)	106 Sg Seskogkin (289)	107 Bh Debian (270)	108 Hs Hasten (269)	109 Mt Metherlan (278)	110 Ds Jumitation (281)	111 Rg Roengenium (280)	112 Cn Coperticium (285)	113 Nh Nhonian (286)	114 Filmonium (289)	115 Mc Maxovium (289)	116 Lv Livermonlum (293)	117 Ts Terressite (294)	118 Og Oganesaon (294)
				\checkmark														
		mass of C			58 3+ Ce ⁶⁺ C+0,m 140,1	59 3+ Pr 4+ Pasederium 140_9	144_2	61 3+ Pm Promethian (145)	62 3+ Sm ⁴⁺ tenatur 150,4	63 3+ Eu 2+ timpian 152.0	64 3+ Gd tetthian 157.3	65 3+ Tb 4+ Tettum 158.9	66 3+ Dy Dyserveium 162_5	67 3+ Ho Ho 164.9	68 3+ Er 54im 167.3	63 3+ Tm ²⁺ Thile 168_9	70 3+ Yb 2+ Yitadium 173L0	71 3+ Lu Lueiue 175_0
	is the mas stable or l	in parent is of the n best know that do no	nost m isotope		90 4+ Th Tedas 232,0	91 5+ Pa 4+ Protecthem 231.0	82 6+ U 4+ Unations 238-0	93 5+ Np 3+ Henrich 6+ (237)	34 4+ Pu 6+ Riseian 5+ (244)	95 3+ Am 4+ 5+ Anseklas 6+ (243)	96 3+ Cm cutur (247)	97 3+ Bk 4+ herkellun (247)	38 3+ Cf Gallonium (251)	99 3+ Es Endeixign (252)	100 3+ Fm 7emion (257)	101 2+ Md 3+ Hendeleture (258)	102 2+ No 3+ Hotelun (259)	103 3+ Lr Lamerclan (262)

The modern periodic table can also be organized into:
Groups (Family) (1-18): A vertical column of elements

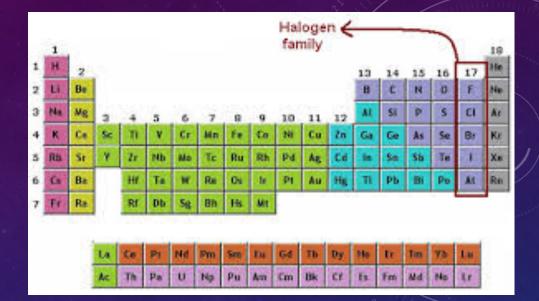
• Periods (1-7): A horizontal row of elements

ALKALI METALS (GROUP 1)

- Shiny and soft
- Highly reactive with water and oxygen (often stored in a non-reactive liquid such as oil)

Video: https://www.youtube.com/watch?v=m55kgyApYrY&ab_c hannel=scientist303

1 H			A		K	A	1	M	E	T/		Š	
з Li	6												E
11 Na	12 Mg												1 /
19 K	20 Ca		21 SC	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	3 G
37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 TC	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	4 I
55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 OS	77 Ir	78 Pt	79 Au	80 Hg	8 T
87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 HS	109 Mt	110 Ds	111 Rg	112 Cn	1: U
													4
hanoi	ds	*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	6 H
		**	100			1000	10.22	-	-	-	100	-	


ALKALINE EARTH METALS (GROUP 2)

- Shiny and soft (but not as soft as alkali metals)
- Highly reactive (but not as reactive as alkali metals)

Video: https://www.youtube.com/watch?v=O6DaCYKh77E&ab_channel=DavidRead

HALOGENS (GROUP 17)

Highly reactive (therefore usually found in nature as part of compounds)

Video:

https://www.youtube.com/watch?v=u2ogMUDBaf4&ab_channel=OpenLearnfromTheOpenUniversity

NOBLE GAS (GROUP 18)

- Odourless, colourless gases
- Least reactive of all of the elements
 - Helium and neon never form compounds
 - Other noble gases form compounds with great difficulty

	IA																	0
1	1	IIA		no	bl	e (na	se	s				IIIA	IVA	VA	VIA	VII	He
2	, Li	ве				B	ໍເ	'n	°	۴	Ne							
3	Na	Mg	IIIB	IVB	VB	VIB	VIIB	_	- 111 -	_	IB	IIB	AI	si	P	s	CI	Ar
4	°	°Ca	Sc	22 Ti	23	[™] Cr	× Mn	Fe	Co	a Ni	Cu	³⁰ Zn	Ga	Ge	As	Se	Br	» Kr
5	Rb	» Sr	³⁹	⁴⁰ Zr	Nb	Мо	a Tc	Ru	Rh	Pd	Âg	¢Cd	În	so Sn	Sb	Se Te	50 	Xe
6	⁵⁰ Cs	^{so} Ba	۶ La	72 Hf	73 Ta	²⁴	75 Re	²⁰ Os	"Ir	" Pt	Au	∞ Hg	Π	Pb	Bi	Po	⁸⁵ At	[™] Rn
7	Fr	Ra	89 +Ac	Rf	Ha	Sg	NS	Hs	109 Mt	110 110	*** 111	112 112	113 113					

ADOPT AN ELEMENT!

- 1. Using the attached fact sheet, complete the handout for your given element
- 2. Using the card stock given, create a fun advertisement for your element! Include:
 - Element name, symbol, atomic mass, ion charge(s)
 - □ A catchy, fun slogan
 - Cost to "buy" your element
 - □ Relevant diagrams/pictures

Due: Thursday, Feb. 17