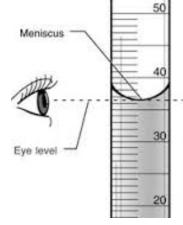
Science 9

Scientific Method Lab

Name:
Date:
Block:


out different amounts of	are combined?
Hypothesis:	
F the same amount of vinegar is combined with	baking soda, THEN what will happen is
BECAUSE	
Experimental Design:	
Experimental Design: 1. Materials	
	•
1. Materials •	•
1. Materials	
•	•

- a) CLEAN everything you'll be using (it may be contaminated with other chemicals)
- b) Use the graduated cylinder to measure 50.0 mL of vinegar. Carefully pour the 50.0 mL of vinegar into the Erlenmeyer flask.
 - i. Use the eye dropper to be as EXACT as possible!
 - ii. Make sure you are reading the correct number of mL on the graduated cylinder...

How many mL would this be? __ The CURVED LINE a liquid forms at its top in a graduated cylinder is called a The correct liquid measurement is the number at the of the meniscus curve!!!!

c) Use the digital scale to measure 2.0 grams of baking soda

- i. Turn digital scale ON
- ii. Make sure it is set to read in GRAMS
- iii. Put a weigh boat on it, then set it to ZERO (or TARE)
- iv. Add baking soda, using the scoopula to be as EXACT as possible
- d) Bend the weigh boat and pour the baking soda into the balloon.
- e) Carefully place the balloon on the mouth of the Erlenmeyer flask, then tip the balloon over so that the baking soda falls in to the vinegar
- f) Hold on to the base of the balloon so that the carbon dioxide that is produced is trapped.
- g) Use a ruler to measure out the height of the balloon from the opening of the Erlenmeyer flask to the top of the balloon
- h) Repeat these steps for the baking soda measures of 4.0 g and 6.0 g.

- 3. Safety Considerations
 - What safety hazards are there? What precautions should you take?
 - What safety equipment should you use and why?

Experiment:

Now carry it out!

Data & Observations:

Suggestion: Use a RULER to measure the height of each balloon. Use a table to compare the results:

Amount of Vinegar	Amount of Baking Soda	Height of Balloon when Baking Soda and Vinegar were combined (Quantitative Observations)
50.0 mL	2.0 g	
50.0 mL	4.0 g	
50.0 mL	6.0 g	

What are some **qualitative observations** you can make from this experiment? Discuss at least two qualitative observations in your response

Error Analysis:

What is a source of error?

Discuss the changes and suggestions you would make to the procedure in order to improve the experiment to get better results. A source of error is issues with the procedure of a lab that may introduce errors or cannot be controlled for, but perhaps improved upon. These could include:

- a) Impurities (from previous experiments, or that cannot be completely rid of)
- b) Human reaction time
- c) Limitations to measuring techniques (i.e. 1 drop can you be certain that each drop size is the exact same?)
- d) Etc...

What is NOT a source of Error?

- a) Avoid using human errors
- b) Measuring improperly
- c) Malfunctioning equipment
- d) Mistakes or oversights on the part of the scientist
- e) Not following procedure
- f) Punching numbers into your calculator incorrectly
- g) Etc...

How may these sources of error affect your results? Be specific!

		Emerging	Developing	Proficient	Extending
	g	Safety hazards and equipment	Safety hazards and equipment	Safety hazards and	Safety hazards and equipment
	Predicting	are not accurately identified	are somewhat accurately	equipment are accurately	are accurately identified and
	gi		identified	identified	explanations of precautionary
	ě	Hypothesis does not relate to			measures are accurately
		the question and explanation is	Hypothesis somewhat relates	Hypothesis is relevant to the	identified
	and	not relevant	to the question and a brief	question, though,	
			explanation is provided	explanation needs to be	Hypothesis is relevant to the
	JE LE	Not all data recorded is		expanded on	question and provides a
	in	relevant; a few key pieces	Most data recorded is relevant,		reasonable scientific
	Questioning	missing. Units of measurement	but some is still missing. Some	All data recorded is relevant.	explanation
	ies	are missing or incorrect.	units of measurement are	Most units of measurement	
	ರ		included.	are included.	All data recorded is relevant.
	_				All units of measurement are
					included.

Clean-Up:

Clean up your station and call the teacher over for your lab clean-up check

	Emerging	Developing	Proficient	Extending
	The lab may be started on time	The lab is started on time but is	The lab is started on time and	The lab is started on time and
	but is not completed before the	not completed before the	completed by the designated	completed efficiently. The lab
	designated end time.	designated end time. Some	end time. The lab is	is completed independently,
bn	Significant teacher assistance is	teacher assistance is required.	completed with minor	without teacher assistance.
Conducting	required.		teacher assistance.	
」		Equipment is occasionally		All equipment is handled
ل ط	Equipment is rarely handled	handled correctly and safely. A	Equipment is mostly handled	correctly/safely. Safety
l o	correctly/safely. Lab is	few reminders are needed to	correctly and safely.	goggles are worn at all times.
_	completed with a few safety	keep safety glasses on.	Safety goggles are almost	All equipment is cleaned and
pu	mistakes. A few reminders are	Some equipment is properly	always worn. Almost all	returned. The lab bench is
Ф	needed to keep safety glasses	cleaned/returned. The lab	equipment is properly	wiped down and clean.
Planning	on.	bench is wiped down.	cleaned/returned. The lab	
٦	Reminders are needed to		bench is wiped down and	The lab is conducted
<u>a</u>	return equipment.	The lab is conducted by certain	clean.	collaboratively between your
۵.		individuals, while the other		group members. Everyone is
	The lab is conducted by certain	members of the group observe.	The lab is conducted between	treated equally and with
	individuals, while other	Everyone is treated with	group members, but	respect.
	members are off task.	respect.	someone is taking the lead.	
			Everyone is treated equally	
			and with respect.	

Variables:

What was the **independent variable** in this experiment?

What was the **dependent variable** in this experiment?

What was the **controlled variable** in this experiment?

Conclusion

Write a **short paragraph conclusion** about this lab. Be sure to answer these questions in your paragraph:

- a. What did you discover?
- b. Was your hypothesis supported or not supported?
- c. What factors may have affected your results?
- d. If you were to redo the experiment, what changes would you make?
- e. What can you conclude in this experiment?

	Emerging	Developing	Proficient	Extending
Communicating	The student cannot connect their observations and data to their hypothesis. The students lack understanding of the connection between variables. Suggested procedural adjustments lack concrete detail and/or are unrelated to the errors identified. Many grammatical errors; ideas	Developing The student makes some connections between their observations, data, and hypothesis. The student has some understanding of the connection between variables. Procedures are described to improve the accuracy and precision of the lab, but lack detail or aren't entirely related to the errors identified.	The student correctly connects their observations and data to their hypothesis. The student can accurately identify the relationship between variables. Procedures to improve the accuracy and precision of the lab are described in some detail. The recommendations mostly correspond to the	The student correctly connects their observations and data to their hypothesis. The student can clearly articulate the relationship between variables. Very specific procedures are described to improve the accuracy and precision of the lab. The recommendations correspond to the errors
	are presented in a jumbled manner. Little scientific vocabulary is used correctly.	Some grammatical errors; ideas presented somewhat logically. Some scientific vocabulary is used correctly.	errors identified. Few grammatical errors; ideas presented logically. Scientific vocabulary is used correctly.	identified. No grammatical errors; logical flow of ideas. Scientific vocabulary is used correctly.