Name:

The Growth of Bacteria

Date:

Bacteria reproduce by a process called binary fission. It is a process that allows bacteria to divide once about every 20 minutes under ideal conditions. In this exercise, you will simulate the growth of bacteria over 10 generations.

In this exercise, the bacteria will reproduce under ideal conditions. Therefore, they will double their numbers every generation. To visualize this growth, we will record their growth numerically and visually. Afterwards, we will represent the growth on a line graph.

We will start with one bacterium and see how many bacteria will be reproduced after 10 generations.
Data Table:

Generation	Time	Population Size	Generation	Time	Population Size
$1^{\text {st }}$	0 min	1	$6^{\text {th }}$	100 min	32
$2^{\text {nd }}$	20 min	+20	2	$\times 2$	$7^{\text {th }}$
$3^{\text {rd }}$	40 min	4	$8^{\text {th }}$	140 min	64
$4^{\text {th }}$	60 min	8	$9^{\text {th }}$	160 min	128
$5^{\text {th }}$	80 min	16	$10^{\text {th }}$	180 min	512

Population Size of bacteria over time

Conclusion:

1. How does this activity represent binary fission?

It represents binary fission because it shows the population doubling each generation
2. What is the population size of your population after 10 generations have passed?

$$
512 \text { bacterin }
$$

3. The curve on your graph represents exponential growth. How would you describe the growth of the bacteria at the beginning of the activity compared to the end?

In the beginning, the growth was slow
After $\sim 100 \mathrm{~min}$, the growth speeds up.
4. What is the population size of your population after 15 generations? Be sure to show how you got your answer.

$$
\begin{aligned}
& 10^{\text {th }} 11^{\text {th }} 12^{\text {th }} 13^{\text {th }} 14^{\text {th }} 15^{\text {th }} \\
& 512 \times 2 \times 2 \times 2 \times 2 \times 2 \\
& =16,384
\end{aligned}
$$

5. If it takes 20 min for your bacteria to divide, how long would it take for your population to reach 15 generations? Remember that in Generation 1, the time is at 0 min . Be sure to show how you got your answer.

$$
\begin{gathered}
10^{\text {th }}+11^{10^{1}}+12^{\text {th }} 13^{\text {th }} 14^{\text {th }} 155^{\text {th }} \\
280 \mathrm{~min} \\
20+20+20+20
\end{gathered}
$$

6. Calculate in terms of minutes or hours how long it would take before the population of bacteria to reach $1,000,000$ bacteria. Be sure to support your response.

$$
\begin{aligned}
& \text { bacteria. Be sure to support your response. } 20^{\text {th }} \\
& 16^{15 \mathrm{th}} 384 \times 2 22^{\text {st }} \\
& \sim 390 \mathrm{~min} \quad \text { halfway }
\end{aligned}
$$

7. Normal cells in your body do not show this kind of growth. However, cancer cell growth resembles exponential growth. Why do you think this is bad for a living organism?

After a period of time, the cancer cells begin to outnumber our normal body cells.

