# Science 9 Physics III

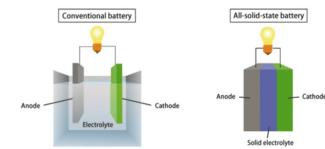
Name: Date: Block:

- 1. Electrochemical Cells
- 2. Voltage, Current, Resistance
- 3. Circuits
- 4. Insulator vs Conductor

#### **Electrochemical Cell**

Electrochemical cell:

Transforms \_\_\_\_\_\_ energy into \_\_\_\_\_\_ energy
The common name for an electrochemical cell is a \_\_\_\_\_\_

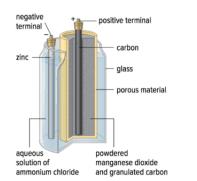

Battery:

• A \_\_\_\_\_ of two or more cells

We can consider electrochemical cells and batteries as \_\_\_\_\_\_. A source is anything that \_\_\_\_\_\_ electrical energy. An \_\_\_\_\_\_ would also be considered a source.

An electrochemical cell is made up of three major parts:

- \_\_\_\_\_: negative side of the cell
- \_\_\_\_\_: positive side of the cell
- \_\_\_\_\_: a catalyst (helps to speed up chemical reactions) that works by promoting the movement of \_\_\_\_\_\_ from the cathode to the anode when the cell is being charged




How does an electrochemical cell work?

- \_\_\_\_\_occur on the surface of \_\_\_\_\_ (a metal conductor which allows electricity to enter and leave)
- The electrodes are placed in a solution called \_\_\_\_\_\_
- The chemical reactions that occur causes one electrode to be \_\_\_\_\_\_ (cathode) and one electrode to be \_\_\_\_\_\_ (anode)
- The electrodes are then placed in contact with the \_\_\_\_\_\_ of the cell
- When we connect the terminals to an electrical \_\_\_\_\_, charges flow through it

#### There are two main types of cells: a \_\_\_\_\_\_, and a \_\_\_\_\_\_,

- Wet cell: the electrolyte is a \_\_\_\_\_\_ solution
- Dry cell: the electrolyte is a \_\_\_\_\_ paste





The chemical reactions that occur within the electrochemical cell causes a buildup of \_\_\_\_\_\_ on the \_\_\_\_\_. As negative charges want to repel each other, the electrons want to move around so that there is no difference between the anode and the cathode.

The \_\_\_\_\_\_ prevents the electrons from moving within the electrochemical cell

When we connect the cell into a circuit, the electrons will be able to leave the anode and travel through the circuit before returning to the cathode.

## **Practice Questions**

- 1. What are the similarities and differences between an electrochemical cell and a battery?
- 2. Describe the functions of the electrolyte in an electrochemical cell

#### Voltage, Current, Resistance

| An electrical circuit is a  | that allows electrons to flow. Within a circuit, we are able to |
|-----------------------------|-----------------------------------------------------------------|
| describe quantities such as | ,,, and,                                                        |

## What is voltage?

Voltage (also known as an electrical potential difference) is the amount of \_\_\_\_\_\_ between two points of a cell. It is the difference in charge between two points.

• A unit of charge (called a coulomb) is able to gain voltage when it passes through a source.

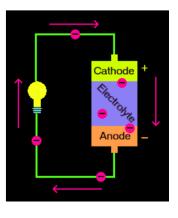
We can measure the amount of voltage in \_\_\_\_\_ ( ) The symbol to represent voltage is *V*.

# What is current?

Electric current is the \_\_\_\_\_\_ where \_\_\_\_\_\_ flows past a certain point in an electric circuit. It can be described as the movement of electrons through a wire.

We can measure the amount of current in \_\_\_\_\_() The symbol to represent current is *I*.

# What is resistance?

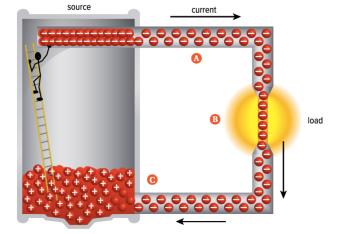

Resistance is described as the degree to which the flow of current is \_\_\_\_\_\_ by a load. A load is an object that is able to \_\_\_\_\_\_ the flow of current. Loads are able to \_\_\_\_\_\_ electrical energy into another form of energy.

- Example: a lightbulb is a load that converts electrical energy into light and thermal energy
- Example: a radio is a load that converts electrical energy into sound energy

We can measure the amount of resistance in ( )

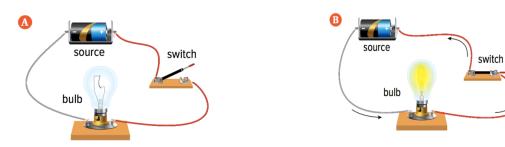
The symbol to represent resistance is *R*.

| Variable   | Symbol | Unit        |
|------------|--------|-------------|
| Voltage    | V      | Volts (V)   |
| Current    | Ι      | Amperes (A) |
| Resistance | R      | Ohms (Ω)    |




#### Circuits

An electrical circuit always contains a \_\_\_\_\_, a \_\_\_\_, and \_\_\_\_\_, that are connected in a closed \_\_\_\_\_. Electrical circuits allow current to flow through each component.


How does current flow through a circuit?

- Electrons will leave the \_\_\_\_\_\_ of the electrochemical cell due to the repulsion between the charges and the attraction to the positive charges in the positive terminal
- The electrons leaving the electrochemical cell will carry \_\_\_\_\_ provided by the cell
- The electrons will pass through the \_\_\_\_\_\_ and transfer some of its energy to the load
- The electrons will leave the load and return to the cell



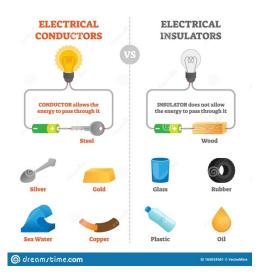
We can control the flow of current with a \_\_\_\_\_

- If the switch is \_\_\_\_\_\_, the circuit is open and current \_\_\_\_\_\_ flow
- If the switch is \_\_\_\_\_\_, the circuit is closed and current \_\_\_\_\_\_ flow



It is also possible to create a short circuit. A short circuit results when the resistance within the circuit is too low, making the \_\_\_\_\_\_ that it becomes dangerous.

• Example: If there wasn't a load (light bulb) to resist the flow of current, the current would be so large that the conductor would get very hot and start a fire


#### **Conductor vs. Insulator**

When creating a circuit, it is important to understand what materials are insulators and what materials are conductors. Electrons are able to either stay on the surface of an object or travel through it.

- \_\_\_\_\_: A material charges cannot travel through
- \_\_\_\_\_: A material charges can travel through

We can describe how easily charges are able to travel through a material as \_\_\_\_\_\_.

- The higher the conductivity of a material, the easier electrons are able to travel through it
- Example: metals tend to be good conductors whereas plastics are insulators

