Name: Date: **Block:**

- 1. Power
- 2. Sustainability
- 3. Generating Electrical Energy

j			
w	$\mathbf{\alpha}$	W	α
	w	w	ŒΙ

There are two main w	ays that we are al	ole to measu	ıre electrical energ	gy:
	and	-		
These two ways of me	asuring out electi	rical energy	is related to the	output by the load
	is the	that		is used by a load.
- Electrical powe	er is measured in	watts (W) o	r kilowatts (kW)	•

- - \circ 1 kW = 1000 watts

Appliances all have a power rating (the rate that they use energy).

Table 3.2 Typical Power Ratings of Appliances

Appliance	Typical Power Rating (kW)		
Clock	0.0050		
Clothes dryer	5.0		
Washing machine	0.50		
Coffee maker	1.0		
Computer	0.20		
Dishwasher	1.8		
Freezer	0.34		
Microwave oven	1.5		
Toaster	1.1		
Vacuum (portable)	1.6		

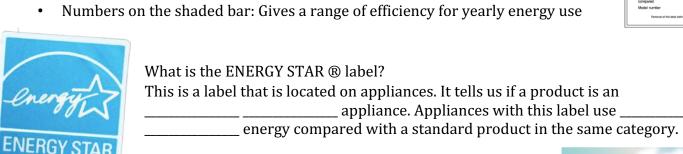
Example:

Lightbulb: 100 W Iron: 1000 W

If we compare the power rating of a light bulb and an iron that is on for the same length of time, the iron will use _____ more energy.

Kilowatt-hours

Electrical energy used by an appliance over a period of time is measured in _____ (kWh). We can find this quantity by first looking at the power rating of the appliance and by measuring the amount of time the load has been used.


Example: If you used a 1.8 kW dishwasher for 2.0 hours, how many kilowatt-hours of electrical energy would you have used?

Example: If a 1600 W vacuum has been turned on for 30 minutes, how many kilowatt-hours of electrical energy would have been used?

In our homes and in buildings, we are	able to measure the amount of electrical
energy used by using a	A smart meter is able to
measure how energy use changes in a	building over the course of a day.

Sustainability			
Many appliances that we buy are able to tell u labels	us how much energy i	t uses through two lab	els:
- ® label			Car
			ENER(
What is the EnerGuide label?			Energy consumption / Co
This is a label that gives details about the	of	that an	706
appliance uses during	of normal use		40 /
 Large number: Shows how much ener 		of normal use	189 kWh
 Shaded bar: Shows how the appliance 	· ·		Uses least energy / Consomme le moins d'énergie

In our homes, we may have appliances that continue to use energy even if it is not on. This is called a _______.

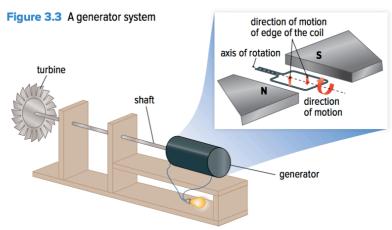
- A phantom load occurs when ______ energy is being ______ on a device when it is turned ______.

- Appliances in stand-by mode (TVs, computers) are actually "on" and have phantom loads

 Phantom loads account for about 900 kWh of energy use each year in the average home

In order to save energy, unplug your devices when not in use!

Practice Questions:


- 1. If a 2000 W dishwasher has been turned on for 45 minutes, how many kilowatt-hours of electrical energy would have been used?
- 2. Explain how electrical energy can be used by an electric toothbrush that is plugged in but is not running

Generating Electrical Energy

How do we generate electrical energy through sustainable ways?

In order to generate electrical energy, most stations will use a _______. A generator system is composed of three main parts:

- _____: steam, water, or wind will cause the turbine to spin
- _____: The shaft connects the turbine to the generator; if the turbine spins, the shaft spins
- _____: Kinetic energy from the shaft is transformed into electrical energy in the generator

In BC, much of our energy is supplied through _____ energy.

- _____ station: will use the kinetic energy from the water as it flows downhill to turn a turbine in order to generate electrical energy

Water flowing through a dam spins giant turbines, which spin a generator to produce electrical energy.

- _____ station: water flowing freely in a river turns a turbine

Other ways of generating electrical energy:

- ______: kinetic energy of the wind is transformed into electrical energy as the wind moves the turbine of the generator system
- ______: Photovoltaic cells within the solar panel transform solar energy into electrical energy. The solar energy is absorbed by the electrons in the photovoltaic cells which allows them to flow.

- _____: Steam from the Earth's crust can be used to turn turbines in the

generator system.

