Name:

Acid-Base Equilibrium Part I Practice Test

Date:

I.	Mu	ltiple	e Choic	e

- _____ 1. Water will act as an acid with which of the following?
 - I. H_2CO_3
 - II. HCO₃-
 - III. CO₃²-
 - A. I only.
 - B. III only.
 - C. I and II only.
 - D. II and III only.
- $\underline{}$ 2. Which of the following describes the relationship between acid strength and K_a value for weak acids?

<u>Acid Strength</u>	$\underline{\mathbf{K}}_{\underline{\mathbf{a}}}$

A. decreases increases

B. decreases remains constantC. increases increasesD. increases decreases

- _____ 3. Which of the following are amphiprotic?
 - I. H_2O
 - II. NH₄+
 - III. HCO₃-
 - A. I and II only.
 - B. I and III only.
 - C. II and III only.
 - D. I, II and III.

- $_{---}$ 4. What is the pOH of a 0.10M Sr(OH)₂ solution?
 - A. 0.70
 - B. 1.00
 - C. 13.00
 - D. 13.30
- 5. Show your calculation for the question above:

- _____ 6. Which of the following 0.10M solutions will have the highest electrical conductivity?
 - A. H_3PO_4
 - B. H₂S
 - C. HIO_3
 - D. CH₃COO-
- _____ 7. After the following pairs of substances react and reach equilibrium, which will favour reactants?
 - A. HSO₄- + HCOO-
 - B. HPO₄²- + HSO₃-
 - C. HIO₃ + CN-
 - D. SO_4^{2-} + HNO_2
- 8. Briefly explain your answer to the question above:

9. Consider the following

$$SO_4^{2-} + HNO_2 \rightleftharpoons HSO_4^{-} + NO_2^{-}$$

Equilibrium would favour:

- A. the products since HSO_4 is a weaker acid than HNO_2 .
- B. the reactants since HSO_4 is a weaker acid than HNO_2 .
- C. the products since HSO₄- is a stronger acid than HNO₂.
- D. the reactants since HSO₄- is a stronger acid than HNO₂

 $\underline{\hspace{1cm}}$ 10. The concentration, K_a and pH values of four acids are given in the following table:

Acid	Concentration	Ka	рН
HA	3.0 M	2.0 x 10 ⁻⁵	2.1
HB	0.7 M	4.0 x 10 ⁻⁵	2.3
HC	4.0 M	1.0 x 10 ⁻⁵	2.2
HD	1.5 M	1.3 x 10 ⁻⁵	2.4

Based on this data, the **strongest** acid is:

A. HA C. HC B. HB D. HD

 $_$ 11. Which of the following K_a values represents the acid with the strongest conjugate base?

D.
$$7.8 \times 10^{-3}$$

12. Briefly explain your answer to the question above:

			_	-		_		_	_			_	
12	Tha	<i>v</i> .	for	+ha	dib	rdra	ann	nhaa	phate	ion	u.n	Λ	ia.
1.5.	. ine	Iλh	101	une	CHILL	/ (TT ()	ven.	DHOS	mate	1011	17 P	114	15.

Chemical species	Ka Value
H ₃ AsO ₄	5.0 x 10 ⁻⁵
H ₂ AsO ₄ -	8.0 x 10 ⁻⁸
HAsO ₄ ² -	6.0 x 10 ⁻¹⁰

The K_b value for H₂AsO₄- is:

16. Explain your answer to the question above:

- 17. Consider a Bronsted-Lowry acid-base equation where HNO_2 is a reactant and $H_2PO_{4^{\text{-}}}$ is a product.
 - a) Complete the following equation:

$$HNO_2 + _ = H_2PO_4 + _ = H_2PO_4$$

b) Identify the weaker base in equilibrium in the above equation.

II. Problems:
1. Define the term amphiprotic. List 2 amphiprotic substances and write a chemical equation describing how it behaves in water.

2. Calculate the $[H_3O^+]$ and [OH-] in a saturated solution of magnesium hydroxide.

4. What mass of HCl must be dissolved in 1.50 L of a NaOH solution having a pH of 11.176 to produce a solution with a pH of 10.750? (Assume no volume change)