Name: ## Acid-Base Equilibrium Part I Practice Test Date: | I. | Mu | ltiple | e Choic | e | |----|----|--------|---------|---| | | | | | | - _____ 1. Water will act as an acid with which of the following? - I. H_2CO_3 - II. HCO₃- - III. CO₃²- - A. I only. - B. III only. - C. I and II only. - D. II and III only. - $\underline{}$ 2. Which of the following describes the relationship between acid strength and K_a value for weak acids? | <u>Acid Strength</u> | $\underline{\mathbf{K}}_{\underline{\mathbf{a}}}$ | |----------------------|---| | | | A. decreases increases B. decreases remains constantC. increases increasesD. increases decreases - _____ 3. Which of the following are amphiprotic? - I. H_2O - II. NH₄+ - III. HCO₃- - A. I and II only. - B. I and III only. - C. II and III only. - D. I, II and III. - $_{---}$ 4. What is the pOH of a 0.10M Sr(OH)₂ solution? - A. 0.70 - B. 1.00 - C. 13.00 - D. 13.30 - 5. Show your calculation for the question above: - _____ 6. Which of the following 0.10M solutions will have the highest electrical conductivity? - A. H_3PO_4 - B. H₂S - C. HIO_3 - D. CH₃COO- - _____ 7. After the following pairs of substances react and reach equilibrium, which will favour reactants? - A. HSO₄- + HCOO- - B. HPO₄²- + HSO₃- - C. HIO₃ + CN- - D. SO_4^{2-} + HNO_2 - 8. Briefly explain your answer to the question above: | 9. Consider the following | |---------------------------| |---------------------------| $$SO_4^{2-} + HNO_2 \rightleftharpoons HSO_4^{-} + NO_2^{-}$$ Equilibrium would favour: - A. the products since HSO_4 is a weaker acid than HNO_2 . - B. the reactants since HSO_4 is a weaker acid than HNO_2 . - C. the products since HSO₄- is a stronger acid than HNO₂. - D. the reactants since HSO₄- is a stronger acid than HNO₂ $\underline{\hspace{1cm}}$ 10. The concentration, K_a and pH values of four acids are given in the following table: | Acid | Concentration | Ka | рН | |------|---------------|------------------------|-----| | HA | 3.0 M | 2.0 x 10 ⁻⁵ | 2.1 | | HB | 0.7 M | 4.0 x 10 ⁻⁵ | 2.3 | | HC | 4.0 M | 1.0 x 10 ⁻⁵ | 2.2 | | HD | 1.5 M | 1.3 x 10 ⁻⁵ | 2.4 | Based on this data, the **strongest** acid is: A. HA C. HC B. HB D. HD $_$ 11. Which of the following K_a values represents the acid with the strongest conjugate base? D. $$7.8 \times 10^{-3}$$ 12. Briefly explain your answer to the question above: | | | | _ | - | | _ | | _ | _ | | | _ | | |------|-------|------------|-----|-----|-------|----------|------|------|-------|------|------|-----|-----| | 12 | Tha | <i>v</i> . | for | +ha | dib | rdra | ann | nhaa | phate | ion | u.n | Λ | ia. | | 1.5. | . ine | Iλh | 101 | une | CHILL | / (TT () | ven. | DHOS | mate | 1011 | 17 P | 114 | 15. | | | | | | | | | | | | | | | | | Chemical species | Ka Value | |-----------------------------------|-------------------------| | H ₃ AsO ₄ | 5.0 x 10 ⁻⁵ | | H ₂ AsO ₄ - | 8.0 x 10 ⁻⁸ | | HAsO ₄ ² - | 6.0 x 10 ⁻¹⁰ | The K_b value for H₂AsO₄- is: 16. Explain your answer to the question above: - 17. Consider a Bronsted-Lowry acid-base equation where HNO_2 is a reactant and $H_2PO_{4^{\text{-}}}$ is a product. - a) Complete the following equation: $$HNO_2 + _ = H_2PO_4 + _ = H_2PO_4$$ b) Identify the weaker base in equilibrium in the above equation. | II. Problems: | |---| | 1. Define the term amphiprotic. List 2 amphiprotic substances and write a chemical equation describing how it behaves in water. | | | | | | | 2. Calculate the $[H_3O^+]$ and [OH-] in a saturated solution of magnesium hydroxide. | 4. What mass of HCl must be dissolved in 1.50 L of a NaOH solution having a pH of 11.176 to produce a solution with a pH of 10.750? (Assume no volume change) | |---| | | | | | | | | | | | | | | | | | |