Chemistry 11 Atomic Theory Practice Test

Name: Key Date: Block:

1. If two atoms of Ca have a different number of electrons, which property (or properties) would be significantly different? 2001 a) Mass b) Charge Ca vs Ca^{2t} eY Both A & B d) Neither A nor B 2. If two atoms of Na have a different number of neutrons which property (or properties) would be significantly different? Isotope (a) Mass b) Charge Sodium - 11 vs sodium - 12 c) Both A & B d) Neither A nor B $\underline{\mathbb{C}}_{-}$ 3. Which of the following ions will NOT have the same electron configuration as Ne? X Na+ (11e⁻ - 1 e⁻)⁻= 10e⁻ 10eb) Al3+ (13e - 3e-) = 10e-1822822p6 (c))Ar 18e-\$ 02- (8e- + 2e-) = 10ea) Potassium period 4 → fewer potos [ow concation] low ionization energy (largest atmic radius) Beryllium period 2 c) Iron period 4 d) Bromine period 4 5. Which of the following would have the largest atomic radius? a) Seaborgium ? period 7 (b) Einsteinium $\frac{1}{2}$ c) Indium period 5 d) Thallium period 6 ____6. Which trend in the halogen family occurs with increasing atomic number? atomic radius T Ionization energy J electronegativity J (a) Ionization energies decrease b) Atomic radii decrease a 1 c) Electronegativities increase g d) Tendency to gain electrons increases (electronegativity) 7. Which of the following species would have 2 valence electrons? a) Boron 3 b) Fluorine **7** c) Oxygen ion 6 + 2 = 8d) Vanadium (III) ion 5 - 3 = 2_____8. What sub-shell is especially stable when it is half-filled? a) s-subshell b) p-subshell c) d-subshell d) f-subshell

11. The following mixtures of isotopes are found in nature. Calculate the average atomic mass of a sample given that ${}^{107}Ag = 51.8\%$ and ${}^{109}Ag = 48.2\%$. Round your answer to one decimal place. Include units.

12. Complete the following table:

1	0		\int	7)	
Flomont Namo	Element	Atomic	Atomic	# of	# of	# of
	Symbol	Number	Mass	protons	neutrons 🖌	electrons /
Titanium	Ti ⁴⁺	22	48	22	26 (18
Bromine	Br	35	80	35	45	36
Gold	Au	79	197	79	118	79

13. Fill in the following table by writing the *full electron configuration* for:

Element	Full Electron Configuration			
Ν	$ s^{2}2s^{2}2p^{3}$			
Мо	1522522p63523p645230104p65524d4			
Ge ⁽²⁾	15 ² 25 ² 2p ⁶ 35 ² 3p ⁶ 45 ² 3d ¹⁰ 4x ²			

14.	Show th	e core notation	orbital diagram	n and determ	ine the numb	er of valence	e electrons.

Element	Core Notation Orbital Diagram	# Valence Electrons
Ru(+)	[Kr] 558 4d = [Kr] 1 1 1 1 1	5
S	[Ne] $3s^{2}3p^{4}$ [Ne] $\frac{1L}{3s} \frac{1L}{3p} \frac{1}{3p}$	6
T(2+)	$[Ar] \xrightarrow{9}{3a^2}$ $[Ar] \xrightarrow{1}{3a} = -$	2
	2a	

15. Identify the **atoms** that has the following electron configuration:

a) $1s^22s^22p^2$ ____ b) $1s^22s^22p^4$ ____ c) $1s^22s^22p^63s^23p^2$ _____ d) [Ne] $3s^{2}3p^{4}$ ______ e) [Ar] $4s^{1}$ _____ f) [Ar] $3d^{10}$ _____ period 3 period 3 16. Consider two neutral atoms: Al and Cl a) Which atom has a larger atomic radius? fewer protons to "pull" in the electrons AI b) Which atom has the larger ionization energy? smaller atomic radius CIc) Which atom has a greater electron affinity? Smaller atomic radius d) How many valence electrons does each atom have? CI = 7 electrons Al : 3 electors

17. Draw the Lewis structures (electron dot diagrams) for the following. Include the VSEPR names as well.

18. Draw the **VSEPR shapes** for the following. *Include the VSEPR names as well.*

19. Determine the type of bond that forms between the following atoms:

a)	0 and 0	3.5-3.5 = ×	Nonpolar covalent
b)	P and O	3.5 - 2.1 = 1.4	polar covalent
c)	CaBr ₂	2.8 - 1.0 = 1.8	IONIC
d)	NaF	4.0 - 0.9 = 3.1	IONIC