Chemistry 11 Atomic Theory Practice Test

Name: Date: Block:

_____ 1. If two atoms of Ca have a different number of electrons, which property (or properties) would be significantly different?

- a) Mass
- b) Charge
- c) Both A & B
- d) Neither A nor B

______ 2. If two atoms of Na have a different number of neutrons which property (or properties) would be significantly different?

- a) Mass
- b) Charge
- c) Both A & B
- d) Neither A nor B

____ 3. Which of the following ions will NOT have the same electron configuration as Ne?

- a) Na+
- b) Al³⁺
- c) Ar
- d) 02-

_____ 4. Which of the following easily loses one outermost electron?

- a) Potassium
- b) Beryllium
- c) Iron
- d) Bromine

5. Which of the following would have the largest atomic radius?

- a) Seaborgium
- b) Einsteinium
- c) Indium
- d) Thallium

_ 6. Which trend in the halogen family occurs with increasing atomic number?

- a) Ionization energies decrease
- b) Atomic radii decrease
- c) Electronegativities increase
- d) Tendency to gain electrons increases

7. Which of the following species would have 2 valence electrons?

- a) Boron
- b) Fluorine
- c) Oxygen ion
- d) Vanadium (III) ion

8. What sub-shell is especially stable when it is half-filled?

- a) s-subshell
- b) p-subshell
- c) d-subshell
- d) f-subshell

9. A molecule has the VSEPR shape of AX_4E_2 . What shape would it have?

- a) tetrahedral
- b) T-shaped
- c) trigonal planar
- d) square planar

_ 10. A molecule is T-shaped. What VSEPR notation would it have?

- a) AX₄E
- b) AX₅
- c) AX_3E_2
- d) AX_2E_3
- 11. The following mixtures of isotopes are found in nature. Calculate the average atomic mass of a sample given that 107 Ag = 51.8% and 109 Ag = 48.2%. Round your answer to one decimal place. Include units.

12. Complete the following table:

Element Name	Element Symbol	Atomic Number	Atomic Mass	# of protons	# of neutrons	# of electrons
	Ti ⁴⁺					
		35				36
	Au					

13. Fill in the following table by writing the *full electron configuration* for:

Element	Full Electron Configuration		
N			
Мо			
Ge+2			

14. Show the <u>core notation</u> orbital diagram and determine the number of valence electrons.

Element	Core Notation Orbital Diagram	# Valence Electrons
Ru ³⁺		
S		
Ti ²⁺		

15. Identify the **atoms** that has the following electron configuration:

a) 1s²2s²2p² _____ b) 1s²2s²2p⁴ _____ c) 1s²2s²2p⁶3s²3p² _____

d) [Ne]3s²3p⁴ _____ e) [Ar]4s¹ _____ f) [Ar]3d¹⁰ _____

16. Consider two neutral atoms: Al and Cl

a) Which atom has a larger atomic radius?

b) Which atom has the larger ionization energy?

c) Which atom has a greater electron affinity?

d) How many valence electrons does each atom have?

17. Draw the Lewis structures (electron dot diagrams) for the following. Include the VSEPR names as well.

Boron trifluoride	Oxygen gas (O ₂)	
VSEPR name:	VSEPR name:	

SI ₆	BrH ₃
VSEPR name:	VSEPR name:

18. Draw the **VSEPR shapes** for the following. *Include the VSEPR names as well.*

CO ₂	BrCl ₄ -
VSEPR name:	VSEPR name:

19. Determine the type of bond that forms between the following atoms:

- a) 0 and 0
- b) P and O
- c) CaBr₂
- d) NaF