Chemistry 12

Electrochemistry Practice Test

I. Multiple Choice

A 1. When an electrode loses mass, it also:

loses electrons
. acts as an oxidizing agent
C. becomes reduced
D. decreases in oxidation number2. At standard conditions, Fe^{+2} reacts spontaneously with
A. I_{2}
B. $\mathrm{Br}-$
C. Co
3. Explain your answer to the question above:

- Fe^{2+} is as OA \& RA
- Spontareoss $=O A$ is above $R A$
- Ag^{+}is the only $R A$ above Fe^{2+} (acting as $O A$)

C 4. Which of the following half-reactions is balanced?
A. $\mathrm{SO}_{4}^{-2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SO}_{3}^{-2}+2 \mathrm{H}^{+}+2 \mathrm{e}$
B. $\mathrm{SO}_{4}^{-2}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}-\rightarrow \mathrm{SO}_{3}{ }^{-2}+2 \mathrm{H}^{+}$
C. $\mathrm{SO}_{4}^{-2}+2 \mathrm{H}^{+}+2 \mathrm{e}-\rightarrow \mathrm{SO}_{3}^{-2}+\mathrm{H}_{2} \mathrm{O}$
D. $\mathrm{SO}_{4}{ }^{-2}+2 \mathrm{H}^{+} \rightarrow \mathrm{SO}_{3}-2+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}$

C 5. During a redox reaction, the oxidizing agent:
A. reduces other species
B. increases in oxidation number
C. gains electrons
D. becomes oxidized

C
6. For a given redox run, the oxidation \# of tin changed from +2 to +4 . As a result
A. lost 2 electrons and was reduced
B. gained 2 electrons and was reduced
C. lost 2 electrons and was oxidized gained 2 electrons and was oxidized
$D_{-2 ?}$ 7. In which of the following compounds does carbon have an oxidation number of
A. CO
B. $\mathrm{CH}_{2} \mathrm{O}$
C. CO_{2}

D. $\mathrm{CH}_{3} \mathrm{OH}$

B 8. Which of the following equations represents a redox reaction?
A. $\mathrm{ZnCl}_{2} \rightarrow \mathrm{Zn}^{2+}+2 \mathrm{Cl}$

$$
\frac{\theta}{\mathrm{Zn}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{ZnBr}_{2}^{-1}}
$$

B. $\mathrm{Zn}+\mathrm{Br}_{2} \rightarrow \mathrm{ZnBr}_{2}$
C. $\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
D. $2 \mathrm{NaI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbI}_{2}+\mathrm{NaNO}_{3}$

A
9. Consider the following reaction:

$$
\mathrm{SO}_{4}{ }^{-2}+\stackrel{-1}{8 \mathrm{I}-}+8 \mathrm{H}^{+} \rightarrow \stackrel{\mathrm{S}-2}{\boldsymbol{O}}+\stackrel{4 \mathrm{I}_{2}}{ }+4 \mathrm{H}_{2} \mathrm{O}
$$

The reducing agent is
A. I-
B. $\mathrm{Sin}_{\mathrm{SO}_{4}}{ }^{2-}$
C. $\mathrm{H}+$
D. 0 in $\mathrm{SO}_{4}{ }^{2}$

C +6
C 10. When $\mathrm{MnO}_{4}-2$ undergoes oxidation, it may form
A. MnO
$M_{n}=+2$
B. MnO_{3}
$M_{n}=+6$
C. MnO_{4}^{-}
$\mu_{n}=+7$
$M_{n}=+3$
11. Explain your answer to the question above:

In $\mathrm{MnO}_{4}^{-2}, M n=+6$
4 Oxidation meas loss of e^{\cdot} and $0 x \neq \uparrow$

B 12. Consider the for/aving reaction: -1 +5

$$
3 \mathrm{I}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 6 \mathrm{H}^{+}+5 \mathrm{I}-+\mathrm{IO}_{3}-
$$

In this reaction, the I_{2} atoms undergo:
A. oxidation only
B. both oxidation and reduction
C. reduction only
D. neither oxidation nor reduction
\qquad 13. In an electrochemical cell, electrons flow from the
(B.)
anode to the cathode through the salt bridge anode to cathode through the external circuit cathode to the anode through the salt bridge
D. cathode to anode through the external circuit
14. Explain your answer to the question above:

Anode $=$ oxidation $\left(\right.$ loss of $\left.e^{-}\right)$

$4 e^{-}$travel through wire to cathode $=$ reduction (gain of e^{-})

B
15. When molten aluminum oxide is electrolyzed, the cathode reaction is:
A. $\mathrm{Al} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{e}-$
B. $\mathrm{Al}^{3+}+3 \mathrm{e}-\rightarrow \mathrm{Al}$
$\mathrm{O}_{2}+4 \mathrm{e} \rightarrow 2 \mathrm{O}^{2}$
D. $2 \mathrm{O}^{2-} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}-$

Al^{3+}	O^{2-}
$O A$	$R A$
reduction	oxidation
cathode anode	

B 16. Gold is found in nature in its pure form because:
A. Au^{3+} is a strong reducing agent
B. Au^{3+} a strong oxidizing agent
C. Au is a strong reducing agent
D. Au is a strong oxidizing agent
17. Explain your answer to the question above:
Au^{3+} is

a strong $O A$ which means it has a strong

tendency to gain e^{-}and become pure $A u_{(s)}$18. The electrolysis of $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ would produce this gas at the anode.
Oxygen
. Hydrogen
C. Water vapour
D. Sulfur dioxide
Anode / RA

Use the following cell diagram for questions 19 and 20.

$\mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu} \quad E^{0}=+0.34$
$\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 e^{-} \quad E^{-}=+0.76 \mathrm{~V}$
E^{0} total: $=+1.10 \mathrm{~V}$
C
A. the mass of the anode increases and the mass of the cathode increases. B the mass of the anode decreases and the mass of the cathode decreases.
C. he mass of the anode decreases and the mass of the cathode increases.
D. the mass of the anode increases and the mass of the cathode decreases.
\qquad 20. In the above electrochemical cell,
A. The anode is Zn and the cathode is Cu

The anode is Cu and the cathode is Zn
C. The anode is Zn^{2+} and the cathode is Cu^{2+}
D. The anode is Cu^{2+} and the cathode is Zn^{2+}21. In the operating electrochemical cell above, the voltage produced is:
A. -1.10 V
C. 0.00 V
D.
+1.10 V
22. Explain your answer to the question above:

$$
\begin{aligned}
& \mathrm{Cu}^{2+}+2 e^{-} \rightarrow \mathrm{Cu} \quad E^{\circ}=+0.34 \\
& \mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+2 e^{-} \quad E^{\circ}=+0.76 \mathrm{~V} \\
& E_{\text {total }}^{\circ}=+1.10 \mathrm{~V}
\end{aligned}
$$

II. Problems

1) For each of the following compounds, identify the oxidation number of the atom(s) indicated.
a) $\mathrm{Mg}_{2} \mathrm{TiO}_{4} \quad \mathrm{Mg}=+2 \quad \mathrm{Ti}=+4 \quad \mathrm{O}=-2$
b) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

$$
K=+1
$$

$\mathrm{Cr}=+6$

$$
0=-2
$$

c) MnO_{4}^{-}

$$
\mathrm{Mn}=+7 \quad 0=-2
$$

2) $\begin{aligned} & R A \\ & \mathrm{Mn}\end{aligned} \mathrm{Mn}^{2+}$ and $\begin{aligned} & O A \\ & \mathrm{Ag}^{+}\end{aligned} \frac{R A}{\mathrm{Ag}}$ this particular reaction. Label all parts of the cell, including the voltage produced.
anode

$$
M n \rightarrow \mathrm{Mn}^{2+}+2 e^{-} \quad \mathrm{Ag}^{+}+e^{-} \rightarrow \mathrm{Ag}
$$

3) Balance the following redox reactions.
a) $\mathrm{Mn}^{+2}+\mathrm{BiO}_{3}{ }^{-} \rightarrow \mathrm{MnO}_{4}{ }^{-}+\mathrm{Bi}^{+3} \quad$ (acidic)

$$
\begin{aligned}
&\left(4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Mn}^{2+}\right.\left.\rightarrow \mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 e^{-}\right) \times 2 \\
&\left(2 e^{-}+6 \mathrm{H}^{+}+\mathrm{BiO}_{3}^{-} \rightarrow \mathrm{Bi}^{3+}+3 \mathrm{H}_{2} \mathrm{O}\right) \times 5 \\
& 8 \mathrm{H}_{2} \mathrm{O}^{+}+2 \mathrm{Mn}^{2+} \rightarrow 2 \mathrm{MnO}_{4}^{-}+\sqrt{16++}+10 e^{-} \\
& 10 e^{-}+36 \mathrm{H}^{+}+5 \mathrm{BiO}_{3}^{-} \rightarrow 5 \mathrm{Bi}_{14+3}^{3+}+15 \mathrm{H}_{2} \mathrm{O} \\
& 14
\end{aligned}
$$

$$
2 \mathrm{Mn}^{2+}+14 \mathrm{H}^{+}+5 \mathrm{BiO}_{3}^{-} \rightarrow 2 \mathrm{MnO}_{4}^{-}+5 \mathrm{Bi}^{3+}+7 \mathrm{H}_{2} \mathrm{O}
$$

a) $\mathrm{Sb}_{2} \mathrm{~S}_{3}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{SO}_{4}{ }^{2}+\mathrm{Sb}_{2} \mathrm{O}_{5}$ (basic)

$$
\begin{aligned}
& \left(e^{-}+2 \mathrm{H}^{+}+\mathrm{NO}_{3} \longrightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}_{4}+28\right. \\
& 28 \mathrm{C}^{+5}+\underset{22}{56 \mathrm{H}^{+}+28 \mathrm{NO}_{3}-28 \rightarrow 2 \mathrm{NO}_{2}+\underset{11}{28} \mathrm{H}_{2} \mathrm{O}} \\
& \begin{aligned}
\mathrm{Sb}_{2} \mathrm{~S}_{3}+ & 22 \mathrm{H}^{+}+28 \mathrm{NO}_{3}^{-} \rightarrow 3 \mathrm{SO}_{4}^{2-}+\mathrm{Sb}_{2} \mathrm{O}_{5}+28 \mathrm{NO}_{2}+1 \mathrm{HNO}_{2} \mathrm{O} \\
& +222 \mathrm{H}^{-} \\
& 22 \mathrm{H}_{2} \mathrm{O} \\
& 11
\end{aligned} \\
& \mathrm{Sb}_{2} \mathrm{~S}_{3}+11 \mathrm{H}_{2} \mathrm{O}+28 \mathrm{NO}_{3}-3 \mathrm{SO}_{4}^{2-}+\mathrm{Sb}_{2} \mathrm{O}_{5}+28 \mathrm{NO}_{2}+220 \mathrm{H}-
\end{aligned}
$$

4) For each of the following, draw the electrolytic cell, including the half-reactions occurring within it:
a) Platinum electrodes in molten MgBr_{2}

$$
E^{\circ} \text { total }=-3.46 \mathrm{~V}
$$

$$
\mathrm{Mg}^{2+} \rightarrow O A-2.37 \mathrm{~V}
$$

$\mathrm{Br}^{-} \rightarrow R A$

$$
2 \mathrm{BC} \rightarrow \mathrm{BC}_{2}+2 \mathrm{e}^{-}
$$

Cathode reduction

$$
\mathrm{Mg}^{2+}+2 e^{-} \rightarrow \mathrm{Mg}
$$

b) Copper electrodes in $\mathrm{NaCl}_{(\text {aq) }}$

$$
\begin{aligned}
& \mathrm{Cu} \rightarrow R \mathrm{RA} \quad-0.34 \mathrm{~V} \\
& \mathrm{Na}^{+} \rightarrow \\
& \mathrm{Cl}^{-} \rightarrow 8 \text { K } \\
& \mathrm{H}_{2} \mathrm{O} \rightarrow \text { or } O \mathrm{~A} \quad-0.41 \mathrm{~V} \\
& E_{\text {total }}=-0.75 \mathrm{~V} \\
& \text { rode } \\
& \text { oxidation } \\
& \mathrm{CU}(\mathrm{~s}) \rightarrow \mathrm{CU}^{2+}+2 e^{-} \quad \underset{\mathrm{Cu}_{2}^{2+}}{\sim} \\
& \text { cathode } \\
& \text { reduction } \\
& 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}
\end{aligned}
$$

5. SRP Table Ranking

$$
\begin{aligned}
& C^{2+}+2 e^{-} \rightarrow C \\
& E^{2+}+2 e^{-} \rightarrow E \\
& D^{2+}+2 e^{-} \rightarrow D \\
& B^{2+}+2 e^{-} \rightarrow B \\
& A^{2+}+2 e^{-} \rightarrow A
\end{aligned}
$$

