Chemistry 12

Equilibrium Practice Test

Name: Date: Block:

Multiple Choice:

_____ 1. A system will proceed to equilibrium in an attempt to achieve a balance between

- A. maximum enthalpy and maximum entropy.
- B. minimum enthalpy and minimum entropy.
- C. maximum enthalpy and minimum entropy.
- D. minimum enthalpy and maximum entropy.

_____ 2. Consider the reaction:

$$BaCO_{3(s)}$$
 + heat \Rightarrow $BaO_{(s)}$ + $CO_{2(g)}$

Which of the following observations will indicate that the reaction has most likely achieved equilibrium?

- A. The mass of the system becomes constant.
- B. The concentration of $BaO_{(s)}$ becomes constant.
- C. All the $BaCO_{3(s)}$ is consumed.
- D. The gas pressure of the system becomes constant.

____ 3. Consider the following reaction at equilibrium:

$$CO_{2(g)} + NO_{(g)} \leq NO_{2(g)} + CO_{(g)}$$
 $\Delta H = +82 \text{ kJ}$

Which procedure will cause this equilibrium to shift to the left?

- A. A decrease in the temperature.
- B. An increase in the temperature.
- C. A decrease in the volume of the system.
- D. An increase in the volume of the system.

 $_$ 4. Quicklime (CaO), is produced from limestone (CaCO $_3$), according to the equilibrium reaction:

heat +
$$CaCO_{3(s)} \hookrightarrow CaO_{(s)}$$
 + $CO_{2(g)}$

Which of the following procedures results in producing the maximum quantity of quicklime?

- A. Lower the temperature and allow $CO_{2(g)}$ to escape.
- B. Raise the temperature and allow $CO_{2(g)}$ to escape.
- C. Lower the temperature and finely grind the $CaCO_3$.
- D. Raise the temperature and finely grind the $CaCO_3$.

 $\underline{\hspace{1cm}}$ 5. Which procedure causes an increase in the value of K_{eq} for the following reaction?

$$C_{(s)} + 2 H_{2(g)} \leftrightharpoons CH_{4(g)}$$
 $\Delta H = -74.8 \text{ kJ}$

- A. Increase the volume.
- B. Increase the temperature.
- C. Decrease the temperature.
- D. Finely powder the $C_{(s)}$.
- 6. Explain your answer to the question above:

_____ 7. Consider the following equilibrium:

$$C_{(s)} + H_2O_{(g)} \leftrightharpoons CO_{2(g)} + H_{2(g)}$$

This equilibrium will **not** shift when

- A. a catalyst is added.
- B. the volume is decreased.
- C. the $[H_2O_{(g)}]$ is increased.
- D. the temperature is increased.

_____ 8. Consider the equilibrium below:

$$N_{2(g)} + 2 O_{2(g)} \leftrightharpoons 2 NO_{2(g)}$$

When the volume of the system is increased, the

- A. equilibrium shifts left and the $[NO_2]$ increases.
- B. equilibrium shifts left and the $[NO_2]$ decreases.
- C. equilibrium shifts right and the [NO₂] increases.
- D. equilibrium shifts right and the [NO₂] decreases.
- 9. Explain your answer to the question above:

__ 10. Consider the following equilibrium:

$$C_{(s)} + 2 H_{2(g)} \leftrightharpoons CH_{4(g)}$$

The equilibrium constant expression is

A.
$$K_{eq} = \frac{[CH_4]}{[H_2]}$$

B.
$$K_{eq} = \frac{[CH_4]}{[H_2]^2}$$

C.
$$K_{eq} = \frac{[CH_4]}{[C][H_2]}$$

D.
$$K_{eq} = \frac{[CH_4]}{[C][H_2]^2}$$

_____ 11. Consider the following equilibrium:

$$PCl_{5(g)} \leftrightharpoons PCl_{3(g)} + Cl_{2(g)}$$

Temperature	K _{eq}
227°C	2.24
486°C	33.3

The increase in K_{eq} shows that the

- A. equilibrium shifts left and the reaction is exothermic.
- B. equilibrium shifts left and the reaction is endothermic.
- C. equilibrium shifts right and the reaction is exothermic.
- D. equilibrium shifts right and the reaction is endothermic.

_ 12. Consider the following system:

$$P_{4(s)} + 6 H_{2(g)} \leftrightharpoons 4 PH_{3(g)}$$

Which of the following changes would cause the above system to shift right?

- A. Add more P₄.
- B. Add a catalyst.
- C. Increase pressure.
- D. Increase surface area.

___ 13. Given the following system:

$$2 \text{ CrO}_{4^{2}\text{-}(aq)} + 2 \text{H}^{+}_{(aq)} \leftrightharpoons \text{Cr}_{2}\text{O}_{7^{2}\text{-}(aq)} + \text{H}_{2}\text{O}_{(l)}$$

Which of the following chemicals, when added to the above system at equilibrium, would result in a decrease in $[CrO_4^{2-}]$?

- A. NaOH
- B. HNO₃
- C. Na₂CrO₄
- D. $Na_2Cr_2O_7$

_____ 14. Given the following equilibrium system:

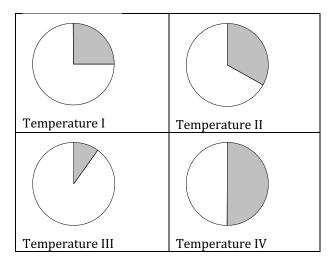
$$Br_{2(q)} \leftrightharpoons Br_{2(l)}$$

The equilibrium constant expression for the above system is:

A.
$$K_{eq} = \frac{[Br_{2(l)}]}{[Br_{2(g)}]}$$

B.
$$K_{eq} = [Br_{2(g)}]$$

c.
$$K_{eq} = \frac{1}{[Br_{2(g)}]}$$


D.
$$K_{eq} = [Br_{2(g)}][Br_{2(l)}]$$

_____ 15. Consider the following equilibrium system:

$$H_{2(g)} + I_{2(g)} \leftrightharpoons 2 HI_{(g)}$$

The percent of I_2 , (by volume) is determined in the above equilibrium at four different temperatures. The results are displayed in the following pie graphs:

Percent of I₂ (shaded area) at different temperatures:

From this data, the $K_{\mbox{\scriptsize eq}}$ value for the above equilibrium is largest at temperature

- A. I.
- B. II.
- C. III.
- D. IV.
- 16. Explain your answer to the question above:

_____ 17. Which of the following equilibria, all at the same temperature, favours the products to the GREATEST extent?

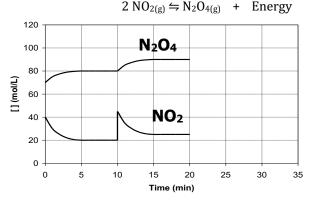
A.
$$H_{2(g)} + I_{2(g)} \leftrightharpoons 2 HI_{(g)}$$
 $K_{eq} = 5.5 \times 10^{1}$
B. $N_{2(g)} + O_{2(g)} \leftrightharpoons 2 NO_{(g)}$ $K_{eq} = 8.7 \times 10^{-2}$
C. $2 HCI_{(g)} \leftrightharpoons H_{2(g)} + CI_{2(g)}$ $K_{eq} = 1.5 \times 10^{-3}$
D. $CO_{2(g)} + H_{2(g)} \leftrightharpoons CO_{(g)} + H_{2}O_{(g)}$ $K_{eq} = 1.6 \times 10^{1}$

18. Explain your answer to the question above:

Problems:

1. Given the following reaction at equilibrium:

$$O_{2 (g)} + 2 CO_{(g)} + CaCO_{3(s)} \iff CaO_{(s)} + 3 CO_{2(g)}$$
 $\Delta H = +110 \text{ kJ}$


For a) to d) below will the equilibrium shift left or right or not change if...

- a) container volume is increased?
- b) some CaCO_{3(s)} is removed?
- c) temperature is increased?
- d) CO_{2(g)} is added?
- e) will K_{eq} increase, decrease or not change if $CO_{2(g)}$ is added?
- f) will K_{eq} increase, decrease or not change if temperature is decreased?
- 2. Consider the following equilibrium system:

$$\begin{array}{ccc} Fe^{3+}{}_{(aq)} & + & SCN^{\textstyle{\cdot}}{}_{(aq)} \leftrightarrows FeSCN^{2+}{}_{(aq)} \\ \textit{light yellow} & \textit{colourless} & \textit{blood-red} \end{array}$$

Cooling the equilibrium changes the colour from yellow to red. What effect will the decrease in temperature have on K_{eq} ? Explain, using Le Chatelier's Principle.

3. The following graph represents concentration changes versus time for the equilibrium reaction:

- a) At what time is equilibrium initially reached?
- b) Explain the changes that occur between 10 and 20 minutes. Indicate the stress applied and how the system responds.
- c) If the temperature of this system was increased at 20 minutes, **sketch directly on the graph** how the concentrations of both substances would change.

4.	At 250°C, K_{eq} for the following reaction is 5.83 x 10². $2 SO_{2(g)} + O_{2(g)} \leftrightharpoons 2 SO_{3(g)}$	
	If the equilibrium concentration of SO_2 is 0.012 M and that of O_2 is 0.049 M, what is the equilibrium concentration of	
	SO ₃ at 250°C?	
	5. Consider the following equilibrium system:	
	$H_{2(g)} + I_{2(g)} \leftrightharpoons 2 \ HI_{(g)} \qquad K_{eq} = 7.1 \ x \ 10^2$ 0.10 mol of each of the three gases in the above system are placed in a 1.0 L container and allowed to come to	
	equilibrium, a) Will the reaction proceed forwards or backwards? Show evidence with a calculation.	
	a) Will the reaction proceed forwards of backwards. Show evidence with a calculation.	
	b) What will be the equilibrium concentration of all 3 gases?	

6. In a 1.00 L container, at equilibrium, the reaction below: $N_2O_{2(g)} + H_{2(g)} \leftrightharpoons N_2O_{(g)} + H_2O_{(g)}$
was analyzed and found to contain 0.200 mol of N_2O_2 , 0.300 mol of H_2 , 0.500 mol of N_2O , and 0.500 mol of H_2O . If 0.100 mol of N_2O_2 is added, what will the new equilibrium concentrations be of both products?
7. A reaction mixture contained 0.240 mol of NO, 0.0860 mol of O ₂ and 1.20 mol of NO ₂ when at equilibrium in a 2.00L bulb. How many mol of O ₂ had to be added to the mixture to increase the number of moles of NO ₂ to 1.28
when equilibrium was re-established? $2 \text{ NO}_{(g)} + O_{2(g)} \leftrightharpoons 2 \text{ NO}_{2(g)}$