Chemistry 11

Mole Conversion Practice Test

Name: Date: Block:

1 L = 1000 mL	1 kg = 1000 g	1 g = 1000 mg
a) 7.89 % b) 22.0 %	of calcium (by mass) in the mole c) 23.7 % d) 54.4 % r work below:	cule Ca ₃ Fe ₂ (SiO ₄) ₃ is
b) The lowest ratio of at c) All possible multiples	atoms of each element in a compours of each element in a compou	
3. What are the una) g / L b) mol / mL	its for molarity? c) mol / L d) L / mol	
4. The empirical for a) the actual number of a b) the concentration of a c) the molar mass of a cod the lowest ratio of each	toms in a compound compound	
5. Another term for a) concentration b) m	or molarity is: olar mass c) molecular formu	ıla d) moles/ gram
	s of a single molecule of water? 1.0 gram c) 6.0 x 10 ⁻²² gram	d) 18.0 grams e) 2.9 x 10 ²³ grams
7. At the same temnumber of particles as a) one liter of He b) three liters of CO ₂ c) two liters of Ne d) two liters of H ₂ e) four liters of SO ₃	sperature and pressure, which sation one liter of oxygen, O_2 ?	mple of gas contains the same

	_	_				
M	Jτ	• • •	Hŧ	•	n	

1.	How many atoms are in $Ni(H_2O)_2(NH_3)_3Cl_2$?
2.	What is the mass of a 250.0 mL sample of hydrogen sulfide (H $_2S$) at STP?
3.	At STP, argon gas has a molar volume of
4.	How many molecules of potassium iodide are in 10.0g of potassium iodide?
5.	A 0.600 mol sample of an unknown gas has a mass of 52.8 g. This gas is a compound of carbon and fluorine. Find the molecular formula.
6.	An experiment is conducted to calculate the molar volume. The following data is collected:

7. Find the volume occupied by 21.6g of N_2H_4 gas at STP.

The molar volume of H ₂ at 21.0°C, 100.4 kPa is 24.3 L/mol. Calculate the mass of 0.213L of H ₂ .
Aspartame is an artificial sweetener that is 160 times sweeter than sucrose (table sugar) when dissolved in water. It is marketed as NutraSweet. The molecular formula for aspartame is $C_{14}H_{18}N_2O_5$. a. Calculate the molar mass of aspartame.
b. How many moles of molecules are present in 10.0 g of aspartame?
c. Calculate the mass in grams of 1.56 mol of aspartame.
d. How many molecules are in 5.0 mg of aspartame?
Nitrosyl chloride (NOCl) is a gas used in the synthesis of some pharmaceutical compounds. Find the mass of a 5.62 mL sample of nitrosyl chloride at STP.

	ind the empirical formula for the following compounds: a) 15.9% B, 84.1% F
1	o) 70.0% Fe, 30.0% O
12. W o	That molar concentration of KCl is produced by measuring out 1.0g KCl and adding water up to 0.350L f solution?