Chemistry 12 ## Name: Date: **Solubility Equil'm Practice Test Block:** ## **Multiple Choice:** 1. The relationship between the solubility of SrF₂ and its K_{sp} is: - A. solubility = $\frac{\sqrt[3]{K_{sp}}}{4}$ - B. solubility = $\sqrt[3]{\frac{K_{sp}}{2}}$ - C. solubility = $\sqrt[3]{\frac{K_{sp}}{4}}$ - D. solubility = $\sqrt{K_{so}}$ 2. Which of the following compounds will form a saturated solution with the greatest concentration of Ag+? A. AgI B. AgBr - C. AgIO₃ - D. AgBrO₃ 3. Explain your answer to the question above: 4. Which of the following compounds is the least soluble in water? A. H₂S C. ZnSO₄ B. KNO_3 D. $Ca(OH)_2$ _5. When Ca(OH)₂ attains solubility equilibrium, the: - A. solution is saturated. - C. Trial K_{sp} is less than the K_{sp} . - B. solution will be acidic - D. concentrations of the ions are equal. 6. When equal volumes of 0.2 M NH₄Cl and 0.2 M CuSO₄ are combined: - A. a precipitate does not form. - B. a precipitate of $(NH_4)_2SO_4$ forms. - C. a precipitate of CuCl₂ forms. - D. a precipitate of both (NH₄)₂SO₄ and CuCl₂ 7. Consider the following graph for a saturated Ag₂CO₃ solution: What change occurred at time t1? - A. Water was added. - C. Na₂CO₃ was added. - B. AgNO₃ was added. - D. The temperature was increased 8. Explain your answer to the question above: 9. From the list of salts below, how many are considered soluble at 25°C? - $CuCl_2$ - CaSO₄ - PbS - Ag_3PO_4 - A. zero - B. one - C. two - D. three $\underline{}$ 10. A saturated solution of PbI₂ was subjected to a stress and the following graph was obtained. Which stress was applied at time t1? A. the addition of PbI₂ C. an increase in volume B. a temperature change D. the evaporation of water $\underline{}$ 11. A dilute solution of AgNO₃ is added dropwise to each of the following test tubes until a precipitate forms in each tube. Which solution requires the lowest [Ag+] to form a saturated solution? A. NaCl C. CuCl₂ B. FeCl₃ D. NH₄Cl 12. Explain your answer to the question above: - _____ 13. Which of the following solutions would have [Fe³⁺]= 0.020M? - A. $0.050M \text{ Fe}(NO_3)_3$ C. 0.040M FeC₆H₅O₇ B. $0.020M \text{ Fe}_2(SO_4)_3$ D. $0.010M \text{ Fe}_2(C_2O_4)_3$ _____ 14. In a saturated solution, the rate of dissolving is: - A. Equal to zero - B. Equal to the rate of recrystallization - C. Less than the rate of recrystallization - D. Greater than the rate of recrystallization _____ 15. The solubility of SnS is 3.2×10^{-3} M. The value of Ksp is: A. 1.0 x10⁻⁵ C. 6.4 x 10⁻³ B. 3.2 x10⁻³ D. 5.7 x 10⁻² _____ 16. Consider the following equilibrium: $$SrF_{2(s)} \rightleftharpoons Sr^{2+}(aq) + 2F^{-}(aq)$$ The equilibrium will shift left upon the addition of: $A.H_2O$ C. SrCl₂ B. KCl D. NaNO₃ 17. Explain your answer to the question above: | 18. When equal volumes of calare combined, | cium nitrate and sodium sulphate | | | |--|---|--|--| | A. a precipitate of CaSO ₄ could form B. a precipitate of NaNO ₃ could form C. a precipitate of CaSO ₄ or NaNO ₃ could form D. no precipitate would form | uld form | | | | 19. Consider the following solubility equilibrium: | | | | | $BaSO_{3(s)} \rightleftharpoons Ba^{2+}_{(aq)} + SO_{3(aq)}^{2-}$ | | | | | Which of the following will result in an increase of [Ba ²⁺]? | | | | | A. adding water
B. adding BaS | C. adding $BaSO_3$ D. adding Na_2SO_3 | | | | 20. Which of the following will not produce a precipitate when equal volumes of solutions are combined? | | | | | A. KOH and CaCl ₂ B. Zn(NO ₃) ₂ and K ₃ PO ₄ | C. $Sr(OH)_2$ and $(NH_4)_2S$
D. Na_2SO_4 and $Pb(NO_3)_2$ | | | | 21. The solubility of strontium fluoride is: | | | | | A. 4.3 x 10 ⁻⁹ M
B. 6.6 x 10 ⁻⁵ M | C. 1.0 x 10 ⁻³ M
D. 1.6 x 10 ⁻³ M | | | | 22. Show your calculation for the question above: | | | | | 23. A solution contains two cations, each having a concentration of 0.20M. When an equal volume of 0.20M hydroxide ions are added, these cations are removed from the solution by precipitation. These ions are: | | | | |--|---|--|--| | A. Ba ²⁺ and K ⁺ | C. Mg ²⁺ and Sr ²⁺ | | | | B. Sr ²⁺ and Na ⁺ | D. Mg^{2+} and Ca^{2+} | | | | 24. The maximum [without a precipitate form | SO_4^{2-}] that can exist in 1.0 x 10^{-3} M $Ca(NO_3)_2$ ling is: | | | | A. 7.1 x 10-5 M | C. 8.4 x 10 ⁻³ M | | | | B. 1.0 x 10 ⁻³ M | D. 7.1 x 10 ⁻² M | | | | 25. Show your calculation | for the question above: | | | | | | | | | 1) A solution contains Mg^{2+} , Pb^{2+} , and Zn^{2+} . What compounds could be adde ion separately? | d, and in what order, to ppt. out each (3 marks) | |---|--| | | | | | | | | | | | | | 2) Milk of magnesia, which contains $Mg(OH)_2$, has a solubility of $7.05 \times 10^{-3}g$ hydroxide. | /L. Calculate the K_{sp} for magnesium (2 marks) | | | | | | | | | | | 3) What mass of Pb^{2+} is present in 5.0L of saturated $Pb(IO_3)_2$? | (3 marks) | **Problems**: | 4) Predict whether a ppt. form when $20.0 mL$ of $5.0 \times 10^{-5} M$ Ca(NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $2.5 \times 10^{-4} M$ Li ₂ C ₂ (NO ₃) ₂ is added to $35.0 mL$ of $35.0 mL$ and a | 04. | |--|-----| | (4 marks) | 5) A saturated solution of silver bromate is prepared by adding $5.00g$ of silver nitrate to a 2.5×10^{-2} M solution | ion | | $NaBrO_{3 (aq)}$. What is the maximum volume of solution produced? (5 marks) |