Chemistry 12

Solubility Equil'm Practice Test

Name: Date: Block:

Multiple Choice:

 $\underline{\underline{C}}$ 1.The relationship between the solubility of SrF₂ and its K_{sp} is:

A. solubility =
$$\frac{\sqrt[3]{K_{sp}}}{4}$$

B. solubility =
$$\sqrt[3]{\frac{K_{sp}}{2}}$$

C.) solubility =
$$\sqrt[3]{\frac{K_{sp}}{4}}$$

D. solubility =
$$\sqrt{K_{sp}}$$

SrF2 = Sr2+ +2F-

$$K_{SP} = [S_{C}^{2+}][F^{-}]^{2}$$

$$= (S)(2S)^{2}$$

$$= 4S^{3} \rightarrow S = 1$$

2. Which of the following compounds will form a saturated solution with the greatest concentration of Ag+?

A. AgI B. AgBr C. AgIO₃ D. AgBrO₃

- 3. Explain your answer to the question above:
 - All salts are 1:1 ratio

- Greatest Ksp value - highest solubility
4 greatest [Ag+]

4. Which of the following compounds is the least soluble in water?

A. H₂S B. KNO₃ C. ZnSO₄
D. Ca(OH)₂
(low solubility)

f 5. When Ca(OH)₂ attains solubility equilibrium, the:

A. solution is saturated.
B. solution will be acidic

C. Trial K_{sp} is less than the K_{sp} . D. concentrations of the ions are equal.

_____6. When equal volumes of 0.2 M NH₄Cl and 0.2 M CuSO₄ are

A.a precipitate does not form.

B. a precipitate of (NH₄)₂SO₄ forms.

C. a precipitate of CuCl₂ forms.

D. a precipitate of both (NH₄)₂SO₄ and CuCl₂

NHy Soy = Soluble CUCI = ppt)

 $\frac{1}{2}$ 7. Consider the following graph for a saturated Ag₂CO₃ solution:

What change occurred at time t1?

A. Water was added.

C. Na₂CO₃ was added.

B. AgNO₃ was added. D. The temperature was increased

8. Explain your answer to the question above:

- [Ag+] spike means Ag+ was added 4 shift left, I[co32-]

9. From the list of salts below, how many are considered soluble at 25°C?

B. o

C. two D. three $\frac{1}{2}$ 10. A saturated solution of PbI₂ was subjected to a stress and the following graph was obtained. PbI₂ \Rightarrow Ph²⁺ \Rightarrow 2T

Which stress was applied at time t1?

A. the addition of PbI₂
B. a temperature change

C. an increase in volume

D. the evaporation of water

(no spikes)

11. A dilute solution of AgNO₃ is added dropwise to each of the following test tubes until a precipitate forms in each tube.

Which solution requires the lowest [Ag+] to form a saturated solution?

A. NaCl B. FeCl₃ C. CuCl₂ D. NH₄Cl

12. Explain your answer to the question above:

13. Which of the following solutions would have [Fe³⁺]= 0.020M?

A. 0.050M Fe(NO₃)₃ B. 0.020M Fe₂(SO₄)₃ C. 0.040M FeC₆H₅O₇ D. 0.010M Fe₂(C₂O₄)₃

Fez (C204) = 2 Fe3+ 3 C2042

14. In a saturated solution, the rate of dissolving is:

A. Equal to zero

B. Equal to the rate of recrystallization

C. Less than the rate of recrystallization

D. Greater than the rate of recrystallization

A 15. The solubility of SnS is 3.2 x10⁻³ M. The value of Ksp is:

A.1.0 x10-5

C. 6.4 x 10⁻³

D. 5.7 x 10⁻²

Kan = 2₅ Su2 € Su₂₁+2₅.

<u>C</u> 1

_ 16. Consider the following equilibrium:

$$SrF_{2(s)}
ightharpoonup Si^{2+}(aq) + 2F^{-}(aq)$$

The equilibrium will shift left upon the addition of:

A.H₂O B. KCl C.SrCl₂

17. Explain your answer to the question above:

18. When equal volumes of calcium nitrate and sodium sulphate are combined.

A.a precipitate of CaSO₄ could form B. a precipitate of NaNO₃ could form C. a precipitate of CaSO₄ or NaNO₃ could form D. no precipitate would form

Caso4 = ppt Na NOz=souble

19. Consider the following solubility equilibrium:

$$BaSO_{3(s)} \rightleftharpoons Ba^{2+}_{(aq)} + SO_{3(aq)}^{2-}$$

Which of the following will result in an increase of [Ba²⁺]?

A. adding water B. adding BaS

C. adding BaSO₃ D. adding Na₂SO₃

20. Which of the following will **not** produce a precipitate when equal volumes of solutions are combined?

A. KOH and CaCl2 B. $Zn(NO_3)_2$ and K_3PO_4 C. $Sr(OH)_2$ and $(NH_4)_2S$ D. Na₂SO₄ and Pb(NO₃)₂

21. The solubility of strontium fluoride is:

A. 4.3 x 10-9 M B. 6.6 x 10⁻⁵ M

22. Show your calculation for the question above:

$$SrF_z \rightleftharpoons Sr_S^{2+} + 2F_{2S}^{-}$$
 $K_{Sp} = 4.3 \cdot 10^{-9} = (s)(2s)^2$
 $4.3 \cdot 10^{-9} = 4s^3$
 $S = 3\sqrt{\frac{4.3 \cdot 10^{-9}}{4}}$

23. A solution contains two cations, each having a concentration of 0.20M. When an equal volume of 0.20M hydroxide ions are added, these cations are removed from the solution by precipitation. These ions are:

A. Ba2+ and K+ B. Sr2+ and Na+ C. Mg²⁺ and Sr²⁺ D. Mg²⁺ and Ca²⁺

24. The maximum $[SO_4^{2-}]$ that can exist in 1.0 x 10^{-3} M Ca $(NO_3)_2$ without a precipitate forming is:

A. 7.1 x 10-5 M B. $1.0 \times 10^{-3} M$

25. Show your calculation for the question above:

$$Caso_{4} \rightleftharpoons Ca^{24} + SO_{4}^{2-}$$

$$Ksp = 7.1 \cdot 10^{-5} = [Ca^{2+}][SO_{4}^{2-}]$$

$$7.1 \cdot 10^{-5} = (1.0 \cdot 10^{-5})[SO_{4}^{2-}]$$

$$7.1 \cdot 10^{-2}M = [SO_{4}^{2-}]$$

Problems:

1) A solution contains Mg^{2+} , Pb^{2+} , and Zn^{2+} . What compounds could be added, and in what order, to ppt. out each

(3 marks)

(Possible answer)

Mg2+ 202+ PbCl2 (s) ppt

(aq)

Add Nacl(aq)

Mg2+ 202+ PbCl2 (s) ppt

(aq)

Add LizS (aq)

Mg2+ 205(s) ppt

Japad KoH(an)

Mg(OH)2(s) ppl

2) Milk of magnesia, which contains $Mg(OH)_2$, has a solubility of $7.05 \times 10^{-3} g/L$. Calculate the K_{sp} for magnesium

hydroxide. $Mg(OH)_{\lambda} \rightleftharpoons Mg^{2+} + 2OH^{-}$ (2 marks)

S= 7.05.10-8 x 1mol mg(0H)2 = 1.21.10-4 M

 $Ksp = [Mg^{2+}][OH^{-}]^{2}$ $= (s)(2s)^{2}$ $= 4s^{3}$ $= (1.2[\cdot 10^{-4})^{3}$ $= 7.09 \cdot 10^{-12}$

3) What mass of Pb²⁺ is present in 5.0L of saturated Pb(IO₃)₂?

(3 marks)

Pb(10_3)₂ \rightleftharpoons Pb²⁺ + 210₃ - 2s Ksp = 3.7.10⁻¹³ = (s)(2s)² 3.7.10⁻¹³ = 4s³ S= $3\frac{3.7\cdot10^{-13}}{4}$ = 4.52·10⁻⁵ = [Pb²⁺]

4.52.10-5 mot x 5.0 x 207.29 pb = 0.047g pb2+

4) Predict whether a ppt. form when 20.0 mL of $5.0 \times 10^{-5} \text{M}$ Ca(NO₃)₂ is added to 35.0 mL of $2.5 \times 10^{-4} \text{M}$ Li₂C₂O₄.

$$C_{A}(NO_{3})_{z} + L_{i_{2}}(zO_{4}) = C_{A}C_{z}O_{4}(y) + 2L_{i}NO_{3}$$

$$C_{A}C_{2}O_{4} = C_{A}C_{z}O_{4}(y) + 2L_{i}NO_{3}$$

$$[C_{A}(NO_{3})_{z}]$$

$$C_{1}V_{1} = C_{2}V_{2}$$

$$(5.0 \cdot (0^{-5})(20.0) = C_{2}(55.0)$$

$$C_{2} = (.8 \cdot (0^{-5})M)$$

$$C_{3} = (.8 \cdot (0^{-5})M)$$

$$C_{4} = (.6 \cdot (0^{-4})M)$$

$$C_{5} = (.8 \cdot (0^{-5})M)$$

$$C_{5} = (.8 \cdot (0^{-5})M)$$

$$C_{6} = (.8 \cdot (0^{-5})(1.6 \cdot (0^{-4}))$$

$$= (1.8 \cdot (0^{-5})(1.6 \cdot (0^{-4}))$$

$$= (2.9 \cdot (0^{-5})(1.6 \cdot (0^{-4})$$

5) A saturated solution of silver bromate is prepared by adding 5.00g of silver nitrate to a 2.5 x 10-2 M solution NaBrO_{3 (aq)}. What is the maximum volume of solution produced? **(5 marks)**