Chemistry 12

Acid-Base Equilibrium I

Name: Date: Block:

- 1. Properties of Acids & Bases
- 2. Definitions of Acids and Bases
- 3. Conjugate Acid-Base Pairs
- 4. Amphiprotic Substances

Properties of Acids and Bases

Acids	Bases
1.	1.
2.	2.
3.	3.
4.	4.

Definitions of Acids and Bases

Arrhenius Theory of Acid and Bases

- Arrhenius acids _____ H+ ions
- Arrhenius bases _____ OH- ions.

Typically...

Acid + Base
$$\rightarrow$$
 Salt + Water $HCl_{(aq)}$ + $NaOH_{(aq)}$ \rightarrow $NaCl_{(aq)}$ + $H_2O_{(I)}$

Brønsted-Lowry Acids and Bases

A broader definition

- Brønsted-Lowry acids _____ H+ ion.
- Brønsted-Lowry bases _____ H+ ion.

Example 1:

$$HCl_{(aq)} + H_2O_{(l)} \rightarrow Cl_{(aq)} + H_3O_{(aq)}$$

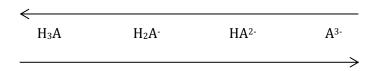
HCl ______ a proton, H+, to the water molecule – HCl is acting as a ______.

 H_2O _____ a proton, H^+ , from HCl – water is acting as a ______.

Example 2:

$$NH_{3 (aq)} + H_2O_{(l)} \hookrightarrow NH_{4^+ (aq)} + OH_{(aq)}$$

 NH_3 _____ a proton, H^+ . NH_3 is acting as a ______.


 H_2O _____ a proton, H^+ . water is acting as a _____.

In the reverse reaction....

 NH_{4}^{+} _____ a proton, H^{+} and is acting as a _____.

OH-_____ a proton, H+. and is acting as a ______.

Gain or lose?

Rewrite the following compounds in order of decreasing number of protons:

- a) $HPO_4^{2-} \mid H_3PO_4 \mid H_2PO_4^{-} \mid PO_4^{3-}$
- b) H₂O | H₃O+ | OH-
- c) SO₄ ²⁻ | H₂SO₄ | HSO₄-
- d) NH₃ | NH₂- | NH₄+
- e) $H_2SO_3 \mid SO_3^{2-} \mid HSO_3^{-1}$

Practice! Identify the following as an acid or base

$$HClO_4 + H_2O \rightarrow ClO_4 + H_3O +$$

$$HI + H_2O \rightarrow I^- + H_3O^+$$

$$HBr + H_2O \rightarrow Br^- + H_3O^+$$

$$HCl + H_2O \rightarrow Cl^- + H_3O^+$$

$$HIO_3 + H_2O \leftrightharpoons IO_3^- + H_3O^+$$

$$HCOOH + H_2O \leftrightharpoons COOH - + H_3O +$$

$$HIO_3 + OH^- \hookrightarrow IO_3^- + H_2O$$

$$H_3PO_4 + OH^- \leftrightharpoons H_2PO_4^- + H_3O^+$$

$$HC_2O_4^- + H_3O^+ \leftrightharpoons H_2C_2O_4 + H_2O$$

$$SO_3^{2-} + H_3O^+ \implies HSO_3^- + H_2O$$

<u>Hebden Workbook Pg. 117 #11, 12</u> <u>Brønsted-Lowry Acid-Base Worksheet #1-8</u>

HCO₂-

Conjugate Acid-Base Pairs

Example 3 – Identify the Brønsted-Lowry acid and base in the following reaction:

$$HF_{(aq)} + CN_{(aq)} \leftrightharpoons HCN_{(aq)} + F_{(aq)}$$

Two substances that differ by one H+ ion are called a conjugate acid-base pair.

Let's practice!

$$HNO_3$$
 + $Cl^ \Leftrightarrow$ HCl + $NO_3^ PO_3^{-3}$ + H_2O \Leftrightarrow HPO_3^{-2} + $OH^ CN^-$ + H_3O^+ \Leftrightarrow HCN + H_2O
 BO_2^{-3} + $HC_2O_4^ \Leftrightarrow$ HBO_2^{-2} + $C_2O_4^{-2}$
 NO_2^- + PH_3 \Leftrightarrow PH_2^- + HNO_2

 \Leftrightarrow

HCOOH

 NH_3

NH₄⁺

Complete the following table:

Conjugate Acid (donates a proton)	Conjugate Base (accepts a proton)	
$H_2C_2O_4$		
	SO ₃ ² -	
HCO₃-		
H ₂ O ₂		
	H ₂ BO ₃ -	
нсоон		
	C ₆ H ₅ O ₇ ²⁻	
	H ₂ O	
H ₂ O		

Hebden Workbook pg. 119 #13

13. Identify each species in the following equations as being an acid or base.
a) HF+SO₃²⁻ ⇒F⁻+ HSO₃ d) H₂PO₄⁻+S²⁻ ⇒HS⁻+ HPO₄²⁻
b) H₂O+HCO₃⁻ ⇒H₃O⁺+ CO₃²⁻ e) N₂H₅⁺+ SO₄²⁻ ⇒N₂H₄+ HSO₄⁻
c) NO₂⁻+H₂O ⇒OH⁻+ HNO₂

a)
$$HF + SO_3^2 \rightleftharpoons F^- + HSO_3^-$$

d)
$$H_2PO_4^- + S^2 \implies HS^- + HPO_4^2$$

b)
$$H_2O + HCO_3^- \iff H_3O^+ + CO_3^{2-}$$

Amphi	protic	Substa	nces

Consider the two reactions below:

$$NH_{3 (aq)} + H_{2}O_{(l)} \leftrightharpoons NH_{4^{+} (aq)} + OH_{(aq)}$$

$$HF_{(aq)} + H_2O_{(l)} \Leftrightarrow H_3O^+_{(aq)} + F^-_{(aq)}$$

In the first reaction, water acts as a BL-acid. In the second reaction, water acts as a BL-base.

An amphiprotic substance has the ability to act as an acid or a base, depending on what it is reacting with.

- 1. Which of the following would be expected to exhibit amphiprotic behavior. Circle those that apply.
 - Se²⁻
- HSe-
- H_2Se
- H_3PO_4
- HPO₄²⁻
- HSO₃-
- 2. Of the species that were circled in the above question, write two equations: (1) behaving as an acid with water (2) behaving as a base with water