Chemistry 12
Acid-Base Equilibrium I

$$
\text { IV } 4-5
$$

$$
p g .109-121
$$

Name: Notes
Date:
Block:

1. Properties of Acids \& Bases
2. Definitions of Acids and Bases
3. Conjugate Acid-Base Pairs
4. Amphiprotic Substances

Properties of Acids and Bases

Definitions of Acids and Bases
Arrhenius Theory of Acid and Bases (re: Science 10)

- Arrhenius acids release H^{+}ions
- Arrhenius bases release OH ions.

Typically... (neutralization reaction)

$$
\begin{array}{ccccccc}
\text { Acid } & + & \text { Base } & \rightarrow & \text { Salt } & + & \text { Water } \\
\mathrm{HCl}_{(a q)} & + & \mathrm{NaOH}_{(\mathrm{aq})} & \rightarrow & \mathrm{NaCl}_{(\mathrm{aq})} & + & \underline{\mathrm{H}}_{2} \mathrm{O}_{(1)} \\
= & & & = & & \mathrm{O}-\mathrm{OH}
\end{array}
$$

Brønsted-Lowry Acids and Bases (Chen 12)
A broader definition

- Brønsted-Lowry acids donates HE ion. ("proton")
- Brønsted-Lowry bases accepts H^{+}ion.

Example 1:

HCl donates a proton, H^{+}, to the water molecule -HCl is acting as a $b-L$ acid
$\mathrm{H}_{2} \mathrm{O}$ accepts a proton, H^{+}, from HCl - water is acting as a \qquad B-L base

Example 2:

$R \times A^{-}$ \qquad accepts a proton, $\mathrm{H}^{+} . \mathrm{NH}_{3}$ is acting as a \qquad B-L base B.L acid $\mathrm{H}_{2} \mathrm{O}$ donafls a proton, H^{+}. water is acting as a \qquad .

In the reverse reaction....
$\mathrm{NH}_{4}{ }^{+}$donate ${ }^{\text {d }}$ proton, H^{+}and is acting as a \qquad $B-L$ acid OH^{-} \qquad accepts a proton, H^{+}. and is acting as a B-L base
\qquad .

Rewrite the following compounds in order of decreasing number of protons:
a) $\mathrm{HPO}_{4}{ }^{2-} \mid \stackrel{\mathrm{H}_{3} \mathrm{PO}_{4}\left|\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}\right| \mathrm{PO}_{4}^{3-}}{ }{ }^{3-}$

$$
\mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{PO}_{4}^{-}, \mathrm{HPO}_{4}^{2-}, \mathrm{PO}_{4}^{3-}
$$

b) $\mathrm{H}_{2} \mathrm{O}\left|\mathrm{H}_{3} \mathrm{O}^{+}\right| \mathrm{OH}^{-}$

Acid
Base

$$
\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}
$$

c) $\mathrm{SO}_{4}{ }^{2-}\left|\mathrm{H}_{2} \mathrm{SO}_{4}\right| \mathrm{HSO}_{4}{ }^{-}$

Acid

$$
\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HSO}_{4}^{-}, \mathrm{SO}_{4}^{2}
$$

d) $\mathrm{NH}_{3}\left|\mathrm{NH}_{2}-\right| \mathrm{NH}_{4}{ }^{+}$

Acid
Base

$$
\mathrm{NH}_{4}^{+}, \mathrm{NH}_{3}, \mathrm{NH}_{2}^{-}
$$

e) $\mathrm{H}_{2} \mathrm{SO}_{3}\left|\mathrm{SO}_{3}{ }^{2-}\right| \mathrm{HSO}_{3}{ }^{-}$

Acid
Base

$$
\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{HSO}_{3}^{-}, \mathrm{SO}_{3}^{2-}
$$

Practice! Identify the following as an acid or base

$\mathrm{HIO}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{IO}_{3}{ }^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$A B B A$

$$
\begin{gathered}
\mathrm{HIO}_{3}+\mathrm{OH}^{-} \leftrightharpoons \mathrm{IO}_{3}-\mathrm{H}_{2} \mathrm{O} \\
\text { B }
\end{gathered}
$$

$$
\mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \leftrightharpoons \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

$B \quad A \quad A \quad B$
$\mathrm{HI}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{I}+\mathrm{H}_{3} \mathrm{O}^{+}$
AB
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cl}+\mathrm{H}_{3} \mathrm{O}^{+}$
A B

$\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{OH}^{-} \leftrightharpoons \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
$A B B \quad A$
$\mathrm{SO}_{3^{2-}}+\mathrm{H}_{3} \mathrm{O}^{+} \leftrightharpoons \mathrm{HSO}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$
$B \quad A \quad A \quad B$

Hebden Workbook Pg. 117 \#11, 12
Brønsted-Lowry Acid-Base Worksheet \#1-8

Example 3 - Identify the Brønsted-Lowry acid and base in the following reaction:

Two substances that differ by one H^{+}ion are called a conjugate acid-base pair.

Complete the following table:

Conjugate Acid (donates a proton)	Conjugate Base (accepts a proton)
$\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$	$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$
$\mathrm{HSO}_{3}{ }^{-}$	$\mathrm{SO}_{3^{2-}}$
$\mathrm{HCO}_{3}{ }^{-}$	$\mathrm{CO}_{3}{ }^{2-}$
$\mathrm{H}_{2} \mathrm{O}_{2}$	$\mathrm{HO}_{2}{ }^{-}$
$\mathrm{H}_{3} \mathrm{BO}_{3}$	$\mathrm{H}_{2} \mathrm{BO}_{3}{ }^{-}$
HCOOH^{-}	COOH^{-}
$\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{7}{ }^{-}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{2-}$
$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{OH}{ }^{-}$

Hebden Workbook pg. 119 \#13

13. Identify each species in the following equations as being an acid or base.
a) $\mathrm{HF}+\mathrm{SO}_{3}^{2-} \rightleftharpoons \mathrm{F}^{-}+\mathrm{HSO}_{3}^{-}$
b) $\mathrm{H}_{2} \mathrm{O}+\mathrm{HCO}_{3}^{-} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{CO}_{3}^{2-}$
c) $\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{OH}^{-}+\mathrm{HNO}_{2}$
d) $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+\mathrm{S}^{2-} \rightleftharpoons \mathrm{HS}^{-}+\mathrm{HPO}_{4}^{2-}$
e) $\mathrm{N}_{2} \mathrm{H}_{5}^{+}+\mathrm{SO}_{4}^{2-} \rightleftharpoons \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{HSO}_{4}^{-}$

Consider the two reactions below:

1. A negative charge and
2. An easily removable H

Then it is amphipotic
ex.

In the first reaction, water acts as a BL-acid. In the second reaction, water acts as a BL-base.

An amphiprotic substance has the ability to act as an acid or a base, depending on what it is reacting with.

1. Which of the following would be expected to exhibit amphiprotic behavior. Circle those that apply.

2. Of the species that were circled in the above question, write two equations: (1) behaving as an acid with water (2) behaving as a base with water

