Chemistry 1 Brønste	2 ed-Lowry Acid-Base Work	shee	Name: Date: Block:
1.	Write the formula for a <i>proton</i> .		
2.	Write the formula for a <i>hydrated proton</i> .		
3.	Write the formula for a hydronium ion.		
4.	Give the <i>Arrhenius</i> definition of an <i>acid</i> .		
5.	Give the <i>Arrhenius</i> definition of a <i>base</i> .		
6.	Give the Bronsted-Lowry definition of an acid .		
7.	Give the Bronsted-Lowry definition of a base .		
8.	Given the equation: $HCO_{3^{-}} + H_2S \rightleftharpoons H_2CO_3 + HS^{-}$		
	a) The acid on the left side is	c)	The acid on the right side is
	b) The base on the left side is	d)	The base on the right side is
9.	Find the <i>conjugate acids</i> of each of the followin	g bases:	

- a) $HPO_{4^{2-}}$ d) NH_3
- b) $PO_{4^{3-}}$ e) $H_2PO_{4^{-}}$
- c) HSO₄-

a) H_2PO_4 b) H_3PO_4 c) HSO_4 -

11. Give the formulas of a conjugate acid/base pair in which the *dihydrogen citrate ion* $(H_2C_6H_5O_7)$ is the <u>conjugate base</u>.

Conjugate acid _____ Conjugate base _____

12. Give the formulas of a conjugate acid/base pair in which the *dihydrogen citrate ion is the conjugate acid*.

Conjugate acid ______ Conjugate base _____

13. Is the dihydrogen citrate ion *amphiprotic*? Explain your answer.