1. Strengths of Acids and Bases
2. Relative Strengths of Brønsted-Lowry Acids and Bases
3. K_{a}, K_{b}
4. Ionization of Water

Strengths of Acids and Bases

Demo: Consider two acid solutions - hydrochloric acid, HCl and acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$.

In order for a solution to conduct electricity, \qquad must be present.

A strong acid (or base) is a substance that \qquad ionizes in aqueous solution. A weak acid (or bases) is a substance that \qquad ionizes in aqueous solution.

HCl is a strong acid.

$$
\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{Cl}^{-}{ }_{(\mathrm{aq})}
$$

- The reaction goes to completion - therefore, \rightarrow is used.
- Other strong acids: $\mathrm{HClO}_{4}, \mathrm{HI}, \mathrm{HBr}, \mathrm{HNO}_{3}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$.
- Strong bases include: $\mathrm{NaOH}, \mathrm{KOH}, \mathrm{Ca}(\mathrm{OH})_{2}$, and $\mathrm{Mg}(\mathrm{OH})_{2}$
$\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid.
- The reaction does not go to completion - therefore \leftrightharpoons is used.
- There are many weak acids and bases.

Classify the following as a strong acid (SA), weak acid (WA), strong base (SB), weak base (WB) or a spectator ion (S).

HClO_{4}	HCOOH	NH_{3}	CN
$\mathrm{Mg}(\mathrm{OH})_{2}$			
$\mathrm{HPO}_{4}{ }^{2-}$	HNO_{2}	$\mathrm{NO}_{3}{ }^{-}$	HNO_{3}
$\mathrm{NH}_{4}{ }^{+}$	$\mathrm{F}-$	Br^{-}	Cl^{-}
	$\mathrm{SO}_{3}{ }^{2-}$	$\mathrm{HSO}_{4}-$	LiOH

Relative Strengths of Brønsted-Lowry Acids and Bases

The higher the K_{a} or K_{b} value, the \qquad $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$respectively.

Acids are listed on the \qquad of the table and their \qquad bases are listed on the \qquad .

Example.

A student tests the electrical conductivity of 0.5 M solutions of the following: carbonic acid, methanoic acid, phenol acid and boric acid. Rank these solutions in order from most conductive to least conductive.

When a BL-acid and base react, the position of the equilibrium is determined by their relative strengths.

Example:

$$
\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{HCOOH}_{(\mathrm{aq})} \leftrightharpoons \mathrm{NH}_{4^{+}}{ }_{(\mathrm{aq})}+\mathrm{HCOO}^{-}(\mathrm{aq})
$$

- Label the respective acids and bases in the above equation.
- According to the BL-acid/base strength table:
- Determine which of the two acids is weaker or stronger.
- Determine which of the two bases is weaker or stronger.
- The equilibrium favours the direction in which the stronger acid and base react to form the weaker conjugate acid and base.

Practice:

1. Predict whether reactants or products will be favoured when HCN reacts with HCO_{3}.

- What is the reaction? Identify the weaker/stronger acid, weaker/stronger base.

2. Predict whether reactants or products will be favoured when $\mathrm{HSO}_{4}-$ reacts with $\mathrm{HC}_{2} \mathrm{O}_{4}$ -
a. Will the $\mathrm{K}_{\text {eq }}$ value be greater or less than 1 ?
3. If $0.10 \mathrm{M} \mathrm{HSO}_{3}{ }^{-}$is mixed with $0.10 \mathrm{M} \mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$, which species will donate a proton?
4. If $0.10 \mathrm{M} \mathrm{HSO}_{4}{ }^{-}$is mixed with $0.10 \mathrm{M} \mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{2-}$, which species will accept a proton?

Strengths of Acids \& Bases Worksheet

$\mathbf{K}_{\mathrm{a}}, \mathbf{K}_{\mathrm{b}}$

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{CH}_{3} \mathrm{COO}^{-}{ }_{(\mathrm{aq})}
$$

In the acetic acid example above, because the reaction reaches an equilibrium, a $\mathrm{K}_{\text {eq }}$ expression can be written. This specific expression is called the K_{a} expression and K_{a} is called the acid ionization constant.

$$
\mathrm{K}_{\mathrm{eq}}=\mathrm{K}_{\mathrm{a}}=
$$

Similarly for weak bases,

$$
\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

The K_{b} expression is:

$$
\mathrm{K}_{\mathrm{eq}}=\mathrm{K}_{\mathrm{b}}=
$$

K_{b} is called the base ionization constant.

Practice:

1. HF is a weak acid.
a. Write an equation showing how HF acts in solution.
b. Write the K_{a} expression for HF.
2. The hydrogen oxalate ion is amphiprotic.
a. Write an equation showing how this ion acts as an acid in solution. Write a K_{a} expression.
b. Write an equation showing how this ion acts as a base in solution. Write a K_{b} expression.

Ionization of Water

Water is amphiprotic so it can donate and accept a proton ion.

- One water can donate a proton to another water molecule - this is called autoionization.

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})}
$$

What would be the equilibrium constant expression?

$$
\mathrm{K}_{\mathrm{eq}}=
$$

The equilibrium constant expression for the autoionization of water is called K_{w}, or the water ionization constant or ion product constant.

At equilibrium, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightharpoons \underset{\mathrm{x}}{\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}}+\underset{\mathrm{x}}{\mathrm{OH}-(\mathrm{aq})}
$$

Both $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}exist in all aqueous solution.

- If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$, the solution is \qquad .
- If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$, the solution is \qquad .
- If $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the solution is \qquad -

Example:

What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in 0.50 M HCl ? Is this solution acidic or basic?

- Is HCl a strong or weak acid?
- Substitute known values into the K_{w} expression and solve.

Practice 1:

Calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$in a saturated solution of magnesium hydroxide. Is this solution acidic or basic?

Practice 2:

A student dissolved 1.42 g of NaOH in 250. mL of solution. Calculate the resulting [$\mathrm{H}_{3} \mathrm{O}^{+}$] and [OH]. Is this solution acidic or basic?

[$\mathrm{H}_{3} \mathrm{O}^{+}$] and [$\mathrm{OH} \cdot$] when 2 solutions are MIXED:

When two solutions are mixed:

- The solutions \qquad each other. $\left(\mathrm{c}_{1} \mathrm{v}_{1}=\mathrm{c}_{2} \mathrm{v}_{2}\right)$
- The acid and base \qquad each other.

Practice 1:

What is the final $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution formed when 25 mL of 0.30 M HCl is added to 35 mL of 0.50 M NaOH ?

- When two solutions are combined, both are diluted. Calculate the new concentrations of HCl and NaOH in the mixed solution.
- The hydronium ions and hydroxide ions will neutralize each other.
- Since there is more \qquad there will be \qquad left over. Calculate how much will be left over.
- Use K_{w} to calculate the hydronium ion concentrations from the hydroxide ion concentration.

Practice 2:

Calculate the final $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] and [OH] in a solution formed when 150 . mL of $1.5 \mathrm{M}_{\mathrm{HNO}}^{3}$ is added to 250 mL of 0.80 M KOH .

Practice 3:

Calculate the resulting $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$when 18.4 mL of 0.105 M HBr is added to 22.3 mL of 0.256 M HCl .

Practice 4:

What mass of NaOH must be added to 500.0 mL of a solution of 0.020 M HI to obtain a solution with a final hydronium ion concentration of 0.0032 M ?

