1. Go to: https://phet.colorado.edu/en/simulations/acid-base-solutions
2. Click the arrow to launch the simulation.
3. Select "Introduction".

4. On the bottom right, select the light bulb tool.

5. Complete the following table:

Solution	Reaction	Light Bulb (select one of the following)
Water ($\left.\mathrm{H}_{2} \mathrm{O}\right)$		Dim // Bright // Very Bright
Strong Acid (HA)		Dim // Bright // Very Bright
Weak Acid (HA)		Dim // Bright // Very Bright
Strong Base (MOH)		Dim // Bright // Very Bright
Weak Base (B)		

6. Provide an explanation of the differences in light bulb brightness:
7. At the very bottom of your screen, select "My Solution".
8. Under "Views" select "Graph".

9. Your reaction is:

10. Your K_{a} expression is: \square
11. Ensure that the "Initial Concentration is 0.010 M and that you haven't moved the parameters on "Strength". (If you did, you can simply hit the refresh button.)
12. Given these parameters, calculate the value of K_{a} and identify the acid based on your AcidsBases table.

Calculation:

Acid: \qquad
13. Fill out the following table by adjusting "Initial Concentration (mol/L)":
${ }^{* *}$ do not adjust the "strength" parameters*

Initial Concentration (mol/L)	$[\mathrm{HA}]$	$[\mathbf{A}-]$	$\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]$	$\mathrm{K}_{\mathbf{a}}$ (calculation)	Identify the Acid	$\mathbf{p H}$
0.001 M						
	$7.97 \times 10^{-3} \mathrm{M}$					
					3.81	
		$2.00 \times 10^{-4} \mathrm{M}$				
0.701 M						

14. Complete the following with "increases", "decreases" or "stays the same".
a. If pH increases, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ \qquad .
b. If pH decreases, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ \qquad .
c. If pH increases, $\left[\mathrm{OH}^{-}\right]$ \qquad .
d. If pH decreases, $\left[\mathrm{OH}^{-}\right]$ \qquad .
e. As initial concentration of an acid increases, pH \qquad .
f. As initial concentration of an acid increases, K_{a} \qquad .
g. As strength of the acid increases, K_{a} \qquad .
