Lab Simulation: Strengths of Acids & Bases

Name: Key

Block:

- 1. Go to: https://phet.colorado.edu/en/simulations/acid-base-solutions
- 2. Click the arrow to launch the simulation.
- 3. Select "Introduction".

4. On the bottom right, select the light bulb tool.

5. Complete the following table:

Solution	Reaction	Light Bulb (select one of the following)		
Water (H ₂ O)	2H20 ⇌ H30++0H-	Dim // Bright // Very Bright		
Strong Acid (HA)	HA + H20 → A- + H30+	Dim // Bright // Very Bright		
Weak Acid (HA)	HA + H20 = A - + H30+	Dim // Bright // Very Bright		
Strong Base (MOH)	MOH → M+ + OH-	Dim // Bright // Very Bright		
Weak Base (B)	B + H20 = BH+ +0H-	Dim / Bright // Very Bright		

6. Provide an explanation of the differences in light bulb brightness:

7. At the very bottom of your screen, select "My Solution".

8. Under "Views" select "Graph".

9. Your reaction is:

10. Your K_a expression is:

- 11. Ensure that the "Initial Concentration is 0.010 M and that you haven't moved the parameters on "Strength". (If you did, you can simply hit the refresh button.)
- 12. Given these parameters, calculate the value of K_a and identify the acid based on your Acids-Bases table.

Calculation:
$$(3.16 \times 10^{-5})(3.16 \times 10^{-5})$$

$$(9.97 \times 10^{-3})$$

Acid: <u>H30 3</u>

13. Fill out the following table by adjusting "Initial Concentration (mol/L)":

**do not adjust the "strength" parameters*

Initial Concentration (mol/L)	[HA]	[A-]	[H ₃ O ⁺]	K _a (calculation)	Identify the Acid	рН
0.001M	9.90×10-4 M	9.95×10+M	9.95×10-14	(.0 × 10-7	H SD3	5.00
M800.0	7.97x10 ⁻³ M	282×10-5M	2.82 «10-5M	(.0×10-7	HSD3	4,55
0.237 M	2.37× 10-1M	1.54 x 10-4 M	1.54×104M	(.0 × 10-7	HSD3	3.81
0.400 M	4.00×10"M	2.00x10 ⁻⁴ M	2.00× 10-4M	(.0×10°7	H S03	3.70
0.701M	7,01×10-14	2.65 × 10 M	2.65×10-4M	(.0×10-7	H 803	3,58

- 14. Complete the following with "increases", "decreases" or "stays the same".
 - a. If pH increases, [H₃O+] decreases
 - b. If pH decreases, [H₃O+] increases
 - c. If pH increases, [OH-] increases.
 - d. If pH decreases, [OH-] decreases
 - e. As initial concentration of an acid increases, pH dureaus.
 - f. As initial concentration of an acid increases, K_a Stays the Same
 - g. As strength of the acid increases, K_a $\underline{\text{INCRASES}}$.