Chemistry 12

Strengths of Acids and Bases Worksheet

Name: Date: Block:

1. a)		e following, det I HClO4 or 1.0 M		ch species	s would have the c) 1.0 M H		_	
b)) 10.0 M HClO_4 or 10.0 M HNO_2			d) 1.0 M NH_{4^+} or 1.0 M HF				
2.	Which is the stronger acid?							
a)	HSO ₃ -	or HC ₂ O ₄	b)	HSO ₃ - or	HSO ₄ -	c) 1	HPO ₄ ²⁻ or HSO ₃ -	
3.	Which is the stronger base?							
a)	HPO ₄ ²	or HSO ₃ -	b)	HSO ₃ - or	HSO ₄ -	c) 1	HCO ₃ - or HCOO-?	
4.	Classify each of the following as: a strong acid (SA), weak acid (WA), strong base (SB), weak base (WB) or a spectator ion (S).							
	a)	F-		f)	Cl-			
	b)	HIO ₃		g)	NH_3			
	c)	NO_3		h)	O ²⁻			
	d)	HClO ₄		i)	CH ₃ COOH			
	e)	$C_2O_4^{2-}$		j)	ClO ₄ -			
5.	What i		a solution m	nade by ac	lding 0.020 mol	es of nitrio	c acid to 500.mL of	
6. a)		e following com and HC ₂ O ₄ -			which species v d HC ₆ H ₅ O ₇ ²⁻		e a proton: HSO ₃ - andHC ₆ H ₅ O ₇ 2	

7. For the following combinations, determine which species will accept a proton:

a) HCO_3 and HC_2O_4

b) HS- and NO₂-

c) H₂SO₄ and HPO₄²-

8.	a) Write the balanced equation which describes the equilibrium present when $0.1~M~H_2SO_3$ is mixed with $0.1~M~NO_2^{\text{-}}$.
	b) For this reaction, equilibrium tends to favour the (reactants/products) and the value of K_{eq} is (<1, >1 or about =1)
9.	a) Write the balanced equation which describes the equilibrium present when $0.1~M~HSO_{3^{\text{-}}}$ is mixed with $0.1~M~HC_2O_{4^{\text{-}}}$.
	b) For this reaction, equilibrium tends to favour the ($reactants/products$) and the value of K_{eq} is (<1, >1 or about =1)
10.	a) Write the balanced equation which describes the equilibrium present when 0.1 M HPO $_4{}^{2\text{-}}$ is mixed with 0.1 M $H_2C_6H_5O_7{}^{\text{-}}.$
	b) For this reaction, equilibrium tends to favour the (reactants/products) and the value of K_{eq} is (<1, >1 or about =1)
11.	The K_{eq} for the reaction: $HA_2B + CD \rightleftharpoons HCD + A_2B$ is 0.0020
	a) Which is the stronger conjugate acid in the above equilibrium?
	b) Which is the stronger conjugate base in the above equilibrium?
12.	The K_{eq} for the reaction: $H_2X + YZ^- \rightleftharpoons HYZ + HX^-$ is $\mathbf{3.4 \times 10^5}$
	a) Which is the stronger conjugate acid in the above equilibrium?
	b) Which is the stronger conjugate base in the above equilibrium?
13.	Equilibrium always favours the (stronger/weaker)acid
14.	Equilibrium always favours the (stronger/weaker)base