1. For the following, determine which species would have the higher $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in water: a) $10.0 \mathrm{M} \mathrm{HClO}_{4}$ or $1.0 \mathrm{M} \mathrm{HClO}_{4}$
c) 1.0 M HIO or $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}$
b) $10.0 \mathrm{M} \mathrm{HClO}_{4}$ or $10.0 \mathrm{M} \mathrm{HNO}_{2}$
d) $1.0 \mathrm{M} \mathrm{NH}_{4}{ }^{+} 1.0 \mathrm{M} \mathrm{HF}$
2. Which is the stronger acid?
a) $\mathrm{HSO}_{3}-\mathrm{HCO}_{2} \mathrm{O}_{4}$
b) $\mathrm{HSO}_{3}-\mathrm{OSO}_{4}^{-}$
c)
$\mathrm{HPO}_{4}{ }^{2-} \mathrm{O} \mathrm{HSO}_{3}^{-}$
3. Which is the stronger base?
a) $\mathrm{HPO}_{4}{ }^{2}-$ or $\mathrm{HSO}_{3}-$
b) HSO_{3} or HSO_{4}
c) HCO_{3} or HCOO ?
4. Classify each of the following as: a strong acid (SA), weak acid (WA), strong base (SB), weak base (WB) or a spectator ion (S).
a) F -
WB
f) Cl^{-}

b) $\quad \mathrm{HIO}_{3}$

g) $\quad \mathrm{NH}_{3}$

c) $\quad \mathrm{NO}_{3}-$

h) $\quad \mathrm{O}^{2-}$ \qquad
d) $\quad \mathrm{HClO}_{4}$

i) $\mathrm{CH}_{3} \mathrm{COOH}$

e) $\quad \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ \qquad j) $\mathrm{ClO}_{4}-$ \qquad
5. What is the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution made by adding 0.020 moles of nitric acid to 500 mL of water?

6. For the following combinations, determine which species will donate a proton:
a) HSO_{3} an $\left(\mathrm{HC}_{2} \mathrm{O}_{4}^{-}\right.$
b) HSO_{4}^{-}and $\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{2-}$
c) $\mathrm{HSO}_{3}-\mathrm{andHC} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{2-}$
7. For the following combinations, determine which species will accept a proton:
a) $\mathrm{HCO}_{3}-$ and $\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$
b) $\mathrm{HS}-\mathrm{and} \mathrm{NO}_{2}{ }^{-}$
c) $\mathrm{H}_{2} \mathrm{SO}_{4}$ an $\mathrm{aHPO}_{4}{ }^{2-}$
8. a) Write the balanced equation which describes the equilibrium present when $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{3}$ is mixed with $0.1 \mathrm{M} \mathrm{NO}_{2}{ }^{-}$.

$$
\mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{NO}_{2} \stackrel{\mathrm{HSO}_{3}-}{\stackrel{\mathrm{HNO}}{2}}
$$

b) For this reaction, equilibrium tends to favour the (reactants (products) and the value of K_{eq} is $(<1 \quad>1$ or about $=1)$
9. a) Write the balanced equation which describes the equilibrium present when $0.1 \mathrm{M} \mathrm{HSO}_{3}$ - is mixed with $0.1 \mathrm{M} \mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$.

$$
\mathrm{HSO}_{3}{ }^{-}+\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-} \gtrless \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}
$$

b) For this reaction, equilibrium tends to favour the (eactants (products) and the value of K_{eq} is $(<1,>1$ or about $=1)$
10. a) Write the balanced equation which describes the equilibrium present when $0.1 \mathrm{M} \mathrm{HPO}_{4}{ }^{2-}$ is mixed with $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}{ }^{-}$.

$$
\mathrm{HPO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{-} \gtrless \mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}+\mathrm{HC}_{6} \mathrm{H}_{5} \mathrm{O}_{7}^{2-}
$$

b) For this reaction, equilibrium tends to favour the (reactants products) and the value of K_{eq} is ($<1,>1$ br about $=1$)
11. The $K_{\text {eq }}$ for the reaction: $\underset{A}{\mathrm{HA}_{2} \mathrm{~B}}+\underset{B}{\mathrm{CD}} \underset{A}{\rightleftarrows} \underset{A}{\mathrm{HCD}}+\underset{A_{2}}{\mathrm{~A}_{2}}$ is $\mathbf{0 . 0 0 2 0}$
a) Which is the stronger conjugate acid in the above equilibrium?

$$
H C D
$$

b) Which is the stronger conjugate base in the above equilibrium?

$$
A_{2} B^{\circ}
$$

12. The $\mathrm{K}_{\text {eq }}$ for the reaction: $\underset{A}{\mathrm{H}_{2} \mathrm{X}}+\underset{B}{\mathrm{YZ}} \underset{A}{\mathrm{HYZ}}+\underset{B}{\mathrm{HX}}$ is $\mathbf{3 . 4} \mathbf{x} \mathbf{1 0}^{5}$
a) Which is the stronger conjugate acid in the above equilibrium?

$$
\mathrm{H}_{2} \mathrm{X}
$$

b) Which is the stronger conjugate base in the above equilibrium?

$$
Y Z-
$$

13. Equilibrium always favours the (stronger weaker) \qquad acid
14. Equilibrium always favours the (stronger weaker) base
