Strengths of Acids and Bases Worksheet

Name: Key Date: Block:

Block:

1. For the following, determine which species would have the **higher** $[H_3O^+]$ in water: a) 10.0 M HClO₄ or 1.0 M HClO₄ c) 1.0 M HIO₃ or 1.0 M H₂SO₃

d) 1.0 M NH₄+ or 1.0 M HF

2. Which is the stronger acid?

c)
$$HPO_4^{2-}$$
 or HSO_3^{-}

3. Which is the stronger base?

4. Classify each of the following as: a strong acid (SA), weak acid (WA), strong base (SB), weak base (WB) or a spectator ion (S).

- a) F-
- WB
- Cl-
- <u>S</u>

WB

- b) HIO₃
- WA
- g) NH₃
- 2 2

- c) NO₃-
- 7.
- h) 0²⁻
- SB

- d) HClO₄
- SA
- CH_3COOH
- WA

- e) $C_2O_4^{2-}$
- WB_
- j) ClO₄-
- S

5. What is the $[H_3O^+]$ in a solution made by adding 0.020 moles of nitric acid to 500.mL of water? 0.020 mol

i)

$$[HNO_{3}] = \frac{0.020m^{01}}{0.5000} = 0.040M$$

$$HNO_{3} \qquad H^{4} \qquad NO_{3}$$

$$0.040M \qquad 0.040M$$

6. For the following combinations, determine which species will donate a protop:

- a) HSO_3 and HC_2O_4
- b) HSO_4 and $HC_6H_5O_7^2$
- c) HSO_3 and $HC_6H_5O_7^2$ -

7. For the following combinations, determine which species will accept a proton:

- a) HCO_3^- and $HC_2O_4^-$
- b) (HS- and NO₂-
- c) H_2SO_4 and HPO_4^{2-}

8. a) Write the balanced equation which describes the equilibrium present when $0.1~M~H_2SO_3$ is mixed with $0.1~M~NO_2$.

- b) For this reaction, equilibrium tends to favour the (reactants/products) and the value of K_{eq} is (<1(>1 or about =1)
- 9. a) Write the balanced equation which describes the equilibrium present when 0.1 M HSO_3 is mixed with $0.1 \text{ M HC}_2\text{O}_4$.

$$HSO_3$$
 + HC_2O_4 \Rightarrow H_2SO_3 + C_2O_4 ²

- b) For this reaction, equilibrium tends to favour the (reactants) products) and the value of K_{eq} is (<1,>1 or about =1)
- 10. a) Write the balanced equation which describes the equilibrium present when 0.1 M HPO₄²is mixed with 0.1 M $H_2C_6H_5O_7$ -.

- b) For this reaction, equilibrium tends to favour the (reactants products) and the value of K_{eq} is (<1,>1) or about =1)
- 11. The K_{eq} for the reaction: $HA_2B + CD \neq HCD + A_2B$ is **0.0020**
 - a) Which is the stronger conjugate acid in the above equilibrium?

b) Which is the stronger conjugate base in the above equilibrium?

- 12. The K_{eq} for the reaction: $H_2X + YZ \rightleftharpoons HYZ + HX \rightleftharpoons 3.4 \times 10^5$
 - a) Which is the stronger conjugate acid in the above equilibrium?

b) Which is the stronger conjugate base in the above equilibrium?

- 13. Equilibrium always favours the (stronger/weaker) acid
- 14. Equilibrium always favours the (stronger/weaker) base