1. pH and pOH

pH and pOH

Complete the following table:

Solution	$\left[\mathrm{H}_{3} \mathbf{O}^{+}\right]$	$\left[\mathbf{O H}^{-}\right]$
1.0 M NaOH		
1.0 M HCl		

- Concentration of acids and bases can range from extremely high to extremely low.
- It is easier to express these concentrations as logarithms.

Logarithms

- "Power of 10 " way to specify the concentration of hydronium or hydroxide ions in a solution
- The logarithm of a number is the power to which 10 must be raised to obtain that number.

$$
10 \mathrm{y}=\mathrm{x} \Leftrightarrow \log _{10} \mathrm{x}=\mathrm{y}
$$

Practice. Take the log of the following numbers.

$\log \left(1.0 \times 10^{-9}\right)$	$\log \left(1.0 \times 10^{-7}\right)$	$\log \left(1.0 \times 10^{-5}\right)$ $=$	$=$
	$=$	$\log \left(1.0 \times 10^{-3}\right)$	
$\log \left(5.0 \times 10^{-9}\right)$	$\log \left(2.4 \times 10^{-7}\right)$	$\log \left(1.6 \times 10^{-5}\right)$	$\log \left(7.9 \times 10^{-3}\right)$
$=$	$=$	$=$	$=$

We want to avoid negative numbers so we multiply by -1. This is called taking the "negative log".

$$
-\log \left(7.9 \times 10^{-3}\right)=
$$

Practice. Take the NEGATIVE log of the following numbers.

```
-log(1.0x1\mp@subsup{0}{}{-8})}\quad-\operatorname{log}(1.0\times1\mp@subsup{0}{}{-6})\quad-\operatorname{log}(1.0\times1\mp@subsup{0}{}{-4}
=
-log(5.0\times1\mp@subsup{0}{}{-8})}\quad-\operatorname{log}(2.4\times1\mp@subsup{0}{}{-6}
=
=
(1.6\times10-4)
=
```

```
= - log(7.9\times10-2)
```

= - log(7.9\times10-2)

```
-log(1.0x10-2)
```

-log(1.0x10-2)
=

```
=
```

- The reverse of "taking the log" is to "take the antilog" \rightarrow EXPONENTIAL FORM
- It just simply means to write the number as a power of 10 .

$$
\text { Antilog }(2.0)=10^{2.0}=100 \quad \text { Antilog }(-2.0)=10^{-2.0}=0.01
$$

Practice. Calculate the following.

$10^{-4.23}$	$10^{-0.34}$ $=$	$10^{-6.89}$ $=$	$10^{-5.790}$ $=$
$10^{-2.1}$	$10^{-6.71}$	$10^{-5.33}$	
$=$	$=$	$=$	$10^{-1.1}$

Significant Figures for Logs:

- Only the digits after the decimal place of a log value is significant:

$$
\begin{aligned}
\text { Ex: }-\log \left(5.28 \times 10^{-5}\right) & =[-\log (5.28)]+\left[-\log \left(10^{-5}\right)\right] \\
& =\mathbf{- 0 . 7 2 3 + (5)} \\
& =4.277
\end{aligned}
$$

Molarity: $5.28 \times 10^{-5} \mathrm{M}(3 \mathrm{SF}) \quad \mathrm{pH}=4.277$ (3 SF)
Practice. Which solutions have the correct number of significant figures? For the incorrect solutions, write the correct answer below.
\(\left.$$
\begin{array}{llll}\begin{array}{lll}-\log \left(5.61 \times 10^{-8}\right) \\
=7.25\end{array} & \begin{array}{l}-\log \left(8.9 \times 10^{-5}\right) \\
=4.051\end{array} & \begin{array}{l}-\log \left(3.0912 \times 10^{-2}\right) \\
=1.509872895\end{array} & \begin{array}{l}-\log \left(1.0 \times 10^{-10}\right) \\
\\
\end{array}
$$

\& \& 10.00\end{array}\right]\)| |
| :--- |
| $10^{-4.52}$ |
| $=3.02 \times 10^{-5}$ |

$$
\begin{gathered}
\mathbf{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathbf{0}^{+}\right][\mathrm{OH}] \\
\text { Take the negative log... } \\
-\log \mathrm{K}_{\mathrm{w}}=-\log \left[\mathrm{H}_{3} \mathbf{0}^{+}\right]+-\log \left[\mathrm{OH}^{-}\right] \\
\text {Results in } \ldots \\
\mathbf{p K}=\mathbf{p H}+\mathbf{p O H} \\
\text { Which means: } \\
\mathbf{p H}=-\log \left[\mathrm{H}_{3} \mathbf{O}^{+}\right] \text {and } \mathbf{p O H}=-\log \left[\mathbf{O H}^{-}\right] \\
\text {and } \\
{\left[\mathbf{H}_{3} \mathbf{O}^{+}\right]=10^{-\mathbf{p H}} \text { and }\left[\mathrm{OH}^{-}\right]=\mathbf{1 0}^{-\mathbf{p O H}}}
\end{gathered}
$$

Practice:

1. What is the pH of a 0.010 M nitric acid solution?
2. What is the pH of a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=3.2 \times 10^{-4} \mathrm{M}$?
3. What is $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$of a solution with $\mathrm{pH}=2.31$?
4. What is the pOH of a 0.05 M NaOH solution?
5. What is the pOH of a solution with $[\mathrm{OH}-]=2.08 \times 10^{-12}$?
6. What is the pH of a solution with a $\mathrm{pOH}=11.022$?

$$
\begin{gathered}
\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathbf{O}^{+}\right][\mathbf{0 H}]=\mathbf{1 . 0 0} \times 10^{-14} \\
\text { Take the negative log... } \\
-\log \mathrm{K}_{\mathbf{w}}==-\log \left[\mathrm{H}_{3} \mathbf{O}^{+}\right]+-\log [\mathbf{0 H}]=-\log (\mathbf{1 . 0 0})+-\log \left(10^{-14}\right) \\
\text { Results in} \ldots \\
\mathbf{p K} \mathbf{w}=\mathbf{p H}+\mathbf{p O H}=\mathbf{0}+\mathbf{1 4} \\
\text { Which means: } \\
\mathbf{p H}+\mathbf{p O H}=\mathbf{1 4}
\end{gathered}
$$

Practice:

1. If $\mathrm{pH}=0.355$, what is pOH ?
2. If $\mathrm{pH}=6.330$, what is $[\mathrm{OH}-$?

Determine the pH of the solution that results when 50.0 mL of $0.200 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is mixed with 100.0 mL of 0.400 M NaOH .

A student adds 35.0 mL of an HCl solution with a pH of 2.00 to 15.0 mL of NaOH solution with a pH of 12.00. Calculate the pH of the final solution.

What mass of NaOH must be added to 500.0 mL of a solution of 0.020 M HI to obtain a solution with a pH of 2.50 ?

