Chemistry 12 Acid-Base Equilibrium III

1. pH and pOH

pH and pOH

Complete the following table:

[H ₃ O ⁺]	[OH [.]]
	[H ₃ O+]

- Concentration of acids and bases can range from extremely high to extremely low.
- It is easier to express these concentrations as **logarithms**.

Logarithms

- "Power of 10" way to specify the concentration of hydronium or hydroxide ions in a solution
- The logarithm of a number is the power to which 10 must be raised to obtain that number.

$10^{y}=x \Leftrightarrow Log_{10}x = y$

<u>Practice.</u> Take the log of the following numbers.

log (1.0x10 ⁻⁹)	log (1.0x10 ⁻⁷)	log (1.0x10 ⁻⁵)	log (1.0x10 ⁻³)
=	=	=	=
log (5.0x10 ⁻⁹)	log (2.4x10 ⁻⁷)	log (1.6x10 ⁻⁵)	log (7.9x10 ⁻³)
=	=	=	=

We want to avoid negative numbers so we **multiply by -1**. This is called taking the **"negative log"**.

<u>Practice.</u> Take the NEGATIVE log of the following numbers.

-log (1.0x10 ⁻⁸)	-log (1.0x10 ⁻⁶)	-log (1.0x10 ⁻⁴)	-log (1.0x10 ⁻²)
=	=	=	=
-log (5.0x10 ⁻⁸)	-log (2.4x10 ⁻⁶)	-log (1.6x10 ⁻⁴)	-log (7.9x10 ⁻²)
=	=	=	=

- The reverse of "taking the log" is to "take the antilog" \rightarrow EXPONENTIAL FORM
- It just simply means to write the number as a power of 10.

Antilog
$$(2.0) = 10^{2.0} = 100$$
 Antilog $(-2.0) = 10^{-2.0} = 0.01$

<u>Practice</u>. Calculate the following.

10-4.23	10-0.34	10-6.89	10 ^{-5.790}
=	=	=	
10-2.1	10-6.71	10-5.33	10 ^{-1.1}
=	=	=	=

res for Logs:	Significant Figures for Logs:			
• Only the digits <u>after</u> the decimal place of a log value is significant:				
Ex: $-\log (5.28 \times 10^{-5}) = [-\log (5.28)] + [-\log (10^{-5})]$				
= -0.723 + (5)				
= 4.277				
olarity: 5.28 x 10 ⁻⁵ M (3 SF)	pH = 4. 277 (3 SF	7)		
Practice. Which solutions have the correct number of significant figures? For the incorrect solutions, write				
-log (8.9x10 ⁻⁵) = 4.051	-log (3.0912x10 ⁻²) = 1.509872895	-log (1.0x10 ⁻¹⁰) = 10.00		
10 ^{-3.1} = 8 x 10 ⁻⁴	10 ^{-1.11} = 0.078	10 ^{-0.96} = 0.1096		
	the digits <u>after</u> the decimal pl og (5.28 x 10 ⁻⁵) = [-log (5.28 = -0.723 + (5 = 4.277 blarity: 5.28 x 10 ⁻⁵ M (3 SF) ations have the correct number elow. -log (8.9x10 ⁻⁵) = 4.051 $10^{-3.1}$ = 8 x 10 ⁻⁴	the digits <u>after</u> the decimal place of a log value is significat og (5.28 x 10 ⁻⁵) = [-log (5.28)] + [-log (10 ⁻⁵)] = -0.723 + (5) = 4.277 blarity: 5.28 x 10 ⁻⁵ M (3 SF) pH = 4.277 (3 SF) attions have the correct number of significant figures? For elow. -log (8.9x10 ⁻⁵) -log (3.0912x10 ⁻²) = 4.051 = 1.509872895 $10^{-3.1}$ 10 ^{-1.11} = 8 x 10 ⁻⁴ = 0.078		

$K_w = [H_3O^+][OH^-]$

Take the negative log...

$-\log K_w = -\log [H_3O^+] + -\log [OH^-]$

Results in...

 $pK_w = pH + pOH$

Which means:

$\mathbf{pH} = -\log [\mathbf{H}_3\mathbf{O}^+]$ and $\mathbf{pOH} = -\log [\mathbf{OH}^-]$

and

$[H_3O^+] = 10^{-pH} \text{ and } [OH^-] = 10^{-pOH}$

Practice:

- 1. What is the pH of a 0.010 M nitric acid solution?
- 2. What is the pH of a solution with $[H_3O^+] = 3.2 \times 10^{-4} \text{ M}$?
- 3. What is $[H_3O^+]$ of a solution with pH = 2.31?
- 4. What is the pOH of a 0.05M NaOH solution?
- 5. What is the pOH of a solution with $[OH-] = 2.08 \times 10^{-12}$?
- 6. What is the pH of a solution with a pOH = 11.022?

$K_w = [H_3O^+][OH^-] = 1.00 \times 10^{-14}$

Take the negative log...

$-\log K_w = -\log [H_3O^+] + -\log [OH^-] = -\log (1.00) + -\log (10^{-14})$

Results in...

$pK_w = pH + pOH = 0 + 14$

Which means:

pH + pOH = 14

Practice:

1. If pH = 0.355, what is pOH?

2. If pH = 6.330, what is $[OH^{-}]$?

Determine the pH of the solution that results when 50.0 mL of 0.200 M $\rm H_2SO_4$ is mixed with 100.0 mL of 0.400 M NaOH.

A student adds 35.0 mL of an HCl solution with a pH of 2.00 to 15.0 mL of NaOH solution with a pH of 12.00. Calculate the pH of the final solution.

What mass of NaOH must be added to 500.0 mL of a solution of 0.020 M HI to obtain a solution with a pH of 2.50?

Hebden Workbook Pg. 143 #58 - 68