Chemistry 12 Acid-Base Equilibrium III

TU 11-12 Pg 134-143

Name: Date: **Block:**

1. pH and pOH

pH and pOH re . Kw = [H30+][OH.] Complete the following table: Solution [H₃0+ [OH-] 1.0 M NaOH 1.0×10-14M 1.0M [H30+] 1.0 M HCl [0H-] = [H30+ 1.0×10 LOM 3 $[SA] = [H_30^+]$

- Concentration of acids and bases can range from extremely high to extremely low. •
- It is easier to express these concentrations as logarithms. •

Logarithms

- "Power of 10" way to specify the concentration of hydronium or hydroxide ions in a solution •
- The logarithm of a number is the power to which 10 must be raised to obtain that number. •

 $10^{y=x} \Leftrightarrow Log_{10}x = y$

ex. 10³ = 1000 ↔ log10 (1000) = 3 **<u>Practice.</u>** Take the log of the following numbers.

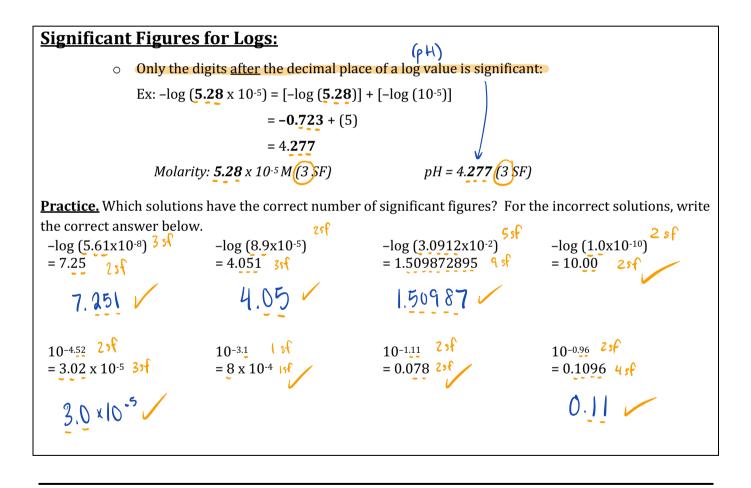
258			Ľ.	
log (1.0x10 ⁻⁹)	log (1.0x10 ⁻⁷)	log (1.0x10 ⁻⁵)	log (1.0x10 ⁻³)	
Pes 00.P - =	= -7.00	= -5.00	= - 3.00 K pH	
log (5.0x10 ⁻⁹)	log (2.4x10 ⁻⁷)	log (1.6x10 ⁻⁵)	log (7.9x10 ⁻³)	
= - 8.30	= - 6.62	= - 4,80	= - 2.10	

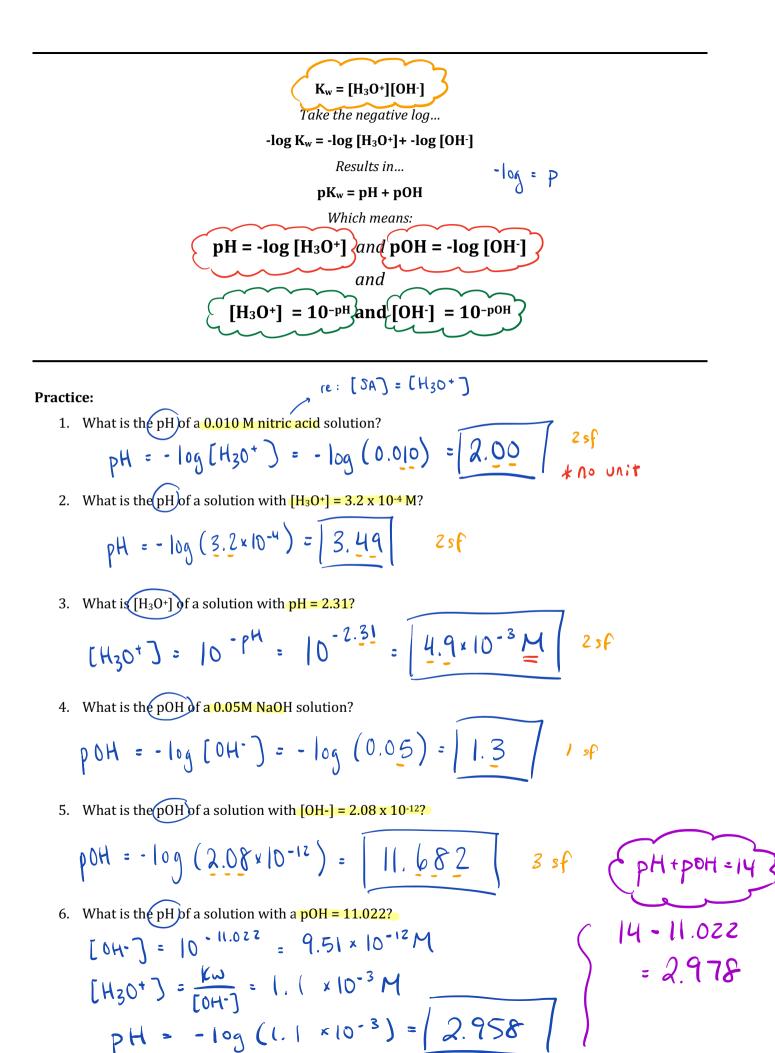
We want to avoid negative numbers so we **multiply by** –1. This is called taking the "**negative log**".

$$-\log(7.9 \times 10^{-3}) = 2.10$$

Practice. Take the NEGATIVE log of the following numbers. 2.sf

$-\log (1.0 \times 10^{-8}) = 2.5$	$= (1.0 \times 10^{-6})$	$= \frac{1.0 \times 10^{-4}}{4.00}$	$-\log(1.0 \times 10^{-2})$ = 2.00
-log (5.0x10 ⁻⁸)	$-\log(2.4 \times 10^{-6})$	$-\log(1.6 \times 10^{-4})$	$-\log(7.9 \times 10^{-2})$
= 7.30	= 5.62	= 3, 80	


G pH


Concertration

- Concertration

- The reverse of "taking the log" is to "take the antilog" \rightarrow EXPONENTIAL FORM
- It just simply means to write the number as a power of 10. Antilog $(2.0) = 10^{2.0} = 100$ Antilog $(-2.0) = 10^{-2.0} = 0.01$

<u>Practice.</u> Calculate the following.

• -

$K_w = [H_3O^+][OH^-] = 1.00 \times 10^{-14}$

Take the negative log...

$$-\log K_{w} = -\log [H_{3}O^{+}] + -\log [OH^{-}] = -\log (1.00) + -\log (10^{-14})$$

Results in...

- log - P $pK_w = pH + pOH = 0 + 14$

Which means: pH + pOH = 14

Practice:

5

1. If pH = 0.355, what is pOH? poh = 14-0.355 = 13.645

2. If pH = 6.330, what is [OH]?

$$P OH = IH - 6.330 = 7.670$$

 $L OH -] = |0^{-7.670} = 2.14 \times 10^{-8}M$
 $CH^{-}] = |0^{-7.670} = 2.14 \times 10^{-8}M$
 $CH^{-}] = \frac{k\omega}{CH_{30}}$
 $(H_{30}^{+}) = \frac{k\omega}{CH_{30}}$
 $(H_{30}^{+}) = \frac{k\omega}{CH_{30}}$
 $(H_{30}^{+}) = \frac{k\omega}{CH_{30}}$
 $(H_{30}^{+}) = 10^{-PH}$
 $(OH^{-}) = 10^{-PH}$
 $[OH^{-}] = 10^{-PH}$
 $POH = -100 [OH^{-})$
 $POH = -100 [OH^{-})$
 $POH = -100 [OH^{-})$

рн = 14 - рон

What mass of NaOH must be added to 500.0 mL of a solution of 0.020 M HI to obtain a solution with a pH of
2.50?

$$G(H_30^+)f$$
 we know there will be an excess
 $d(H_30^+)f = 10^{-2.50} = 0.0032 M$
 $[H_30^+)f = [H_30^+]_i - [OH^-]_i$
 $[OH^-]_i = 0.020M - 0.0032 M$
 $= 0.017 M$
 $0.5000L \times \frac{0.017 \text{ mol}}{12} \times \frac{40.09}{12} = 0.34 \text{ g}$
Hebden Workbook Pg. 143 #58-68

_

.