Chemistry 12 Acid-Base Equilibrium IV

Name: Date: Block:

1. K_a/K_b Calculations

Complete the following statements:

- 1. As a solution becomes more acidic...
 - [H₃O⁺] increases or decreases?
 - pH increases or decreases?
 - [OH-] increases or decreases?
 - pOH increases or decreases?
- 2. If the pH of a solution equals 5.00, the [OH-] equals _____M.
- If the pOH of a solution decreases by 5, then the [H₃O+] has _____ (increased or decreased) by a factor of _____.

Calculations Involving K_a and K_b

Recall...

Acid = HA and Base = B

u Dase – D

 $HA + H_2O \rightleftharpoons H_3O^+ + A^ K_a = \frac{[A^-][H_3O^+]}{[HA]}$

 $B + H_2O \rightleftharpoons HB^+ + OH^ K_b = \frac{[HB][OH^-]}{[B]}$

Write the chemical equation and K_a expression that represents the reaction of HNO₂ in water.

Write the chemical equation and K_b expression that represents the reaction of NH_3 in water.

CALCULATIONS FOR WEAK ACIDS

Problem Type 1: Calculating pH

Example: Calculate the pH and pOH of 0.50 M solution of hydrofluoric acid.

- Is HF a strong or weak acid?
- What is the chemical equation? (What kind of arrow will you use?)
- What is the K_a value (from the table!) and expression?
- Since this is a weak acid, equilibrium is established. ICE TABLE!!

	HF (aq)	+	H ₂ O (l)	٦٢	F ⁻ (aq)	+	H ₃ O+ (aq)
Initial							
Change							
Equilibrium							

We don't include the concentration of water because we assume the $[H_2O]$ remains constant.

• Fill out values for the K_a expression.

- The expression in the denominator: 0.50 M x can be assumed to be \cong 0.50M.
 - \circ The value of K_a is very small compared to the initial concentration of the acid. This means that the percent of the acid that actually ionizes will not significantly change the original concentration.
 - $\circ~$ If initial [HA] is at least 10³ times larger than the K_a value, the assumption is valid.
- Solve for unknown.

Practice 1: Hydrogen sulphide is a poisonous flammable gas whose "rotten egg" smell is perceptible at concentrations as low as 0.00047 ppm. It is also a weak acid when dissolved in water. Calculate the pH and pOH of 0.0500M H_2S .

Problem Type 2: Calculating initial [HA]

Example: What concentration of benzoic acid is required to produce a solution with a pOH of 10.70?

- Using given pOH, calculate the [H₃O+]
- Construct an ICE table.

- What is the K_a for benzoic acid?
- Solve for the unknown.

Problem Type 3: Calculating Ka

Example: A 0.100 M solution of acetylsalicylic acid, $C_8H_7O_2COOH$, is found to have a pH of 2.27. Calculate the K_a for this acid.

- Using given pH, calculate the $[H_3O^+]$ at equilibrium
- Construct an ICE table.

• What is the K_a expression? Solve for K_a.

CALCULATIONS FOR WEAK BASES

As with acids, most bases are weak. Using the symbol "B" for a weak base, we can represent the equilibria of weak bases in water:

$$B_{(aq)} + H_2O_{(l)} \Leftrightarrow HB^+_{(aq)} + OH^-_{(aq)}$$
 $K_b =$

We must calculate the K_{b} for that base by using the K_{a} value of its conjugate acid

Consider the conjugate acid/base pair of NH₄⁺ and NH₃ and their respective Ka and Kb expressions:

NH ₄ +	NH ₃
Reaction:	Reaction:
K _a =	K _b =

Two common terms appear in each equation.

• Multiply the two expressions together and cancel the common terms...

 $K_a \ge K_b =$

This allows us to formulate the following relationship for conjugate acid-base pairs:

 K_a (conjugate acid) x K_b (conjugate base) = K_w = 1.0 x 10⁻¹⁴

For the following weak bases, write out the equation with water and calculate the K_b.

CN-

The following species are amphiprotic. Compare $K_{a}\,and\,K_{b}.$

 HC_2O_4 -

 $H_2PO_4^-$

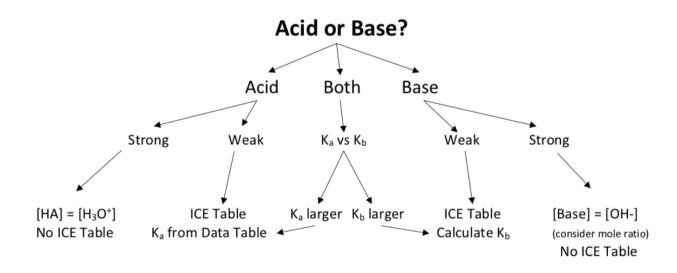
HPO42-

Problem Type 1: Calculating pOH

Practice: Calculate the pH and pOH of a 0.50 M solution of HSO₃⁻.

Practice: Calculate the pH of a solution containing 0.20 M CN-.

Problem Type 2: Calculating initial [B]


Practice: What concentration of NH₃ would be required to produce a solution with pH = 10.50?

Problem Type 3: Calculating K_b

Practice: A solution is prepared by dissolving 9.90 g of the weak base hydroxylamine, NH_2OH in enough water to produce 500.0 mL of solution. The pH of the solution is found to be 9.904. Calculate the K_b for hydroxylamine.

Practice: A 0.400 M solution of the weak base methylamine, CH_3NH_2 , is found to have a pH of 13.30. Calculate the K_b and pK_b of methylamine.

Hebden Workbook: Pg. 153-4 #84-93

