Chemistry 12
Acid-Base Equilibrium IV

1. K_{a} / K_{b} Calculations

Complete the following statements:

1. As a solution becomes more acidic...

- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$increases or decreases?
- pH increases or decreases?
- [OH-] increases or decreases?
- pOH increases or decreases?

2. If the pH of a solution equals 5.00 , the [$\mathrm{OH}-]$ equals \qquad M.
3. If the pOH of a solution decreases by 5 , then the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$has \qquad (increased or decreased) by a factor of \qquad .

Calculations Involving K_{a} and K_{b}

Recall...

$$
\text { Acid }=\mathrm{HA} \quad \text { and } \quad \text { Base }=B
$$

$$
\begin{array}{cc}
\mathrm{HA}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{A}^{-} & \mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{HB}^{+}+\mathrm{OH}^{-} \\
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{[\mathrm{HA}]} & \mathrm{K}_{\mathrm{b}}=\frac{[\mathrm{HB}]\left[\mathrm{OH}^{-}\right]}{[\mathrm{B}]}
\end{array}
$$

Write the chemical equation and K_{a} expression that represents the reaction of HNO_{2} in water.

Write the chemical equation and K_{b} expression that represents the reaction of NH_{3} in water.

CALCULATIONS FOR WEAK ACIDS

Problem Type 1: Calculating pH

Example: Calculate the pH and pOH of 0.50 M solution of hydrofluoric acid.

- Is HF a strong or weak acid?
- What is the chemical equation? (What kind of arrow will you use?)
- What is the K_{a} value (from the table!) and expression?
- Since this is a weak acid, equilibrium is established. ICE TABLE!!

	$\mathrm{HF}_{(\mathrm{aq})}$	+	$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	\leftrightharpoons	$\mathrm{F}^{-}{ }_{(\mathrm{aq})}$	+	$\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$
Initial							
Change							
Equilibrium							

We don't include the concentration of water because we assume the [$\left.\mathrm{H}_{2} \mathrm{O}\right]$ remains constant.

- Fill out values for the K_{a} expression.
- The expression in the denominator: $0.50 \mathrm{M}-\mathrm{x}$ can be assumed to be $\cong 0.50 \mathrm{M}$.
- The value of K_{a} is very small compared to the initial concentration of the acid. This means that the percent of the acid that actually ionizes will not significantly change the original concentration.
- If initial [HA] is at least $10^{\mathbf{3}}$ times larger than the K_{a} value, the assumption is valid.
- Solve for unknown.

Practice 1: Hydrogen sulphide is a poisonous flammable gas whose "rotten egg" smell is perceptible at concentrations as low as 0.00047 ppm . It is also a weak acid when dissolved in water. Calculate the pH and pOH of $0.0500 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$.

Problem Type 2: Calculating initial [HA]

Example: What concentration of benzoic acid is required to produce a solution with a pOH of 10.70 ?

- Using given pOH , calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
- Construct an ICE table.
- What is the K_{a} for benzoic acid?
- Solve for the unknown.

Problem Type 3: Calculating K ${ }_{a}$

Example: A 0.100 M solution of acetylsalicylic acid, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{COOH}$, is found to have a pH of 2.27. Calculate the K_{a} for this acid.

- Using given pH , calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at equilibrium
- Construct an ICE table.
- What is the K_{a} expression? Solve for K_{a}.

CALCULATIONS FOR WEAK BASES

As with acids, most bases are weak. Using the symbol " B " for a weak base, we can represent the equilibria of weak bases in water:

$$
\mathrm{B}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})} \leftrightharpoons \mathrm{HB}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{-}{ }_{(\mathrm{aq})} \quad \mathrm{K}_{\mathrm{b}}=
$$

We must calculate the K_{b} for that base by using the K_{a} value of its conjugate acid Consider the conjugate acid/base pair of $\mathrm{NH}_{4}{ }^{+}$and NH_{3} and their respective Ka and Kb expressions:

	$\mathrm{NH}_{4}{ }^{+}$	
Reaction:		NH_{3}
$\mathrm{~K}_{\mathrm{a}}=$	Reaction:	

Two common terms appear in each equation.

- Multiply the two expressions together and cancel the common terms...
$\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=$

This allows us to formulate the following relationship for conjugate acid-base pairs:

$$
\mathrm{K}_{\mathrm{a}} \text { (conjugate acid) } \times \mathrm{K}_{\mathrm{b}} \text { (conjugate base) }=\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}
$$

For the following weak bases, write out the equation with water and calculate the K_{b}. CN-
$\mathrm{NO}_{2}{ }^{-}$

The following species are amphiprotic. Compare K_{a} and K_{b}.
$\mathrm{HC}_{2} \mathrm{O}_{4}$
$\mathrm{H}_{2} \mathrm{PO}_{4}$
$\mathrm{HPO}_{4}{ }^{2-}$

Problem Type 1: Calculating pOH

Practice: Calculate the pH and pOH of a 0.50 M solution of HSO_{3}.

Practice: Calculate the pH of a solution containing 0.20 M CN -

Problem Type 2: Calculating initial [B]

Practice: What concentration of NH_{3} would be required to produce a solution with $\mathrm{pH}=10.50$?

Problem Type 3: Calculating $\mathbf{K}_{\mathbf{b}}$

Practice: A solution is prepared by dissolving 9.90 g of the weak base hydroxylamine, $\mathrm{NH}_{2} \mathrm{OH}$ in enough water to produce 500.0 mL of solution. The pH of the solution is found to be 9.904 . Calculate the K_{b} for hydroxylamine.

Practice: A 0.400 M solution of the weak base methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, is found to have a pH of 13.30 . Calculate the K_{b} and pK_{b} of methylamine.

Hebden Workbook: Pg. 153-4 \#84-93

