Chemistry 12
Acid-Base Equilibrium IV

IV $14 \cdot 15$

Name:

Date:
pg. 148.154
Block:

1. K_{a} / K_{b} Calculations

Complete the following statements:

1. As a solution becomes more acidic...

2. If the pH of a solution equals 5.00 , the $[\mathrm{OH}-]$ equals $1.0 \times 10^{-9} \mathrm{M}$. $\mathrm{POH}=9.00$
$[\mathrm{OH} \cdot]=10^{-9.00}$
3. If the pOH of a solution decreases by 5 , then the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$has \qquad (increased or decreased) by a factor of \qquad .

Calculations Involving K_{a} and K_{b}

Recall...

Write the chemical equation and K_{a} expression that represents the reaction of HNO_{2} in water.

$$
\begin{gathered}
\mathrm{HNO}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NO}_{2}^{-}(\mathrm{an})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \\
\mathrm{Ka}_{\mathrm{a}}=\frac{\left[\mathrm{NO}_{2}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HNO}_{2}\right]}
\end{gathered}
$$

Write the chemical equation and K_{b} expression that represents the reaction of NH_{3} in water.

$$
\begin{gathered}
\mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{e}) \overrightarrow{\mathrm{r}} \mathrm{NH}_{4}^{+}+\mathrm{OH}_{(\mathrm{aq})}^{-} \\
\mathrm{K}_{b}=\frac{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}
\end{gathered}
$$

Problem Type 1: Calculating pH
weak acid

$$
[W A] \neq\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

Example: Calculate the pH and pOH of 0.50 M solution of hydrofluoric acid.

- Is HF a strong or weak acid?
weak
- What is the chemical equation? (What kind of arrow will you use?)

$$
H_{(c y)}+H_{2} O_{(1)} \rightleftharpoons F_{(4)}^{\prime}+H_{3} O^{+}(4)
$$

- What is the K_{a} value (from the table!) and expression?

$$
K_{a}=\frac{[F-]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{HF}^{2}\right]} \quad=3.5 \times 10.4
$$

- Since this is a weak acid, equilibrium is established. ICE TABLE!!

	$\mathrm{HF}_{(\mathrm{aq})}$	+	$\mathrm{H}_{2} \mathrm{O}_{(1)}$	\leftrightharpoons	$\mathrm{F}^{-}(\mathrm{aq})$	+	$\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
Initial	0.50 M					0 M	
Change	$-x$					$+x$	
Equilibrium	$0.50 \cdot x$					x	

We don't include the concentration of water because we assume the [$\mathrm{H}_{2} \mathrm{O}$] remains constant.

- Fill out values for the K_{x} expression.

$$
K_{a}=\frac{(x)(x)}{0.50-x}=3.5 \times 10^{-4}
$$

Must be stated!
assume $0.50-x \cong 0.50$

- The expression in the denominator: $0.50 \mathrm{M}-\mathrm{x}$ can be assumed to be $\cong 0.50 \mathrm{M}$.
- The value of K_{a} is very small compared to the initial concentration of the acid. This means that the percent of the acid that actually ionizes will not significantly change the original concentration.
- If initial [HA] is at least 10^{3} times larger than the K_{a} value, the assumption is valid.
- Solve for unknown.

$$
\begin{aligned}
& \frac{x^{2}}{0.50}=3.5 \times 10^{-4} \\
& x=\sqrt{0.5 \times\left(3.5 \times 10^{-4}\right)} \\
& =0.013 \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{aligned}
$$

Practice 1: Hydrogen sulphide is a poisonous flammable gas whose "rotten egg" smell is perceptible at concentrations as low as 0.00047 ppm . It is also a weak acid when dissolved in water. Calculate the pH and DOH $0.0500 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$.

$$
\begin{aligned}
& K_{a}=\frac{\left[\mathrm{HS}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=\frac{9.1 \times 10^{-8}}{2 \mathrm{sf}} \\
& \frac{x^{2}}{0.0500-x}=9.1 \times 10^{-8} \\
& \text { *assume } 0.0500 \cdot x \cong 0.0500 \\
& p H=-\log \left(6.7 \times 10^{-5}\right)=4.17 \\
& \mathrm{POH}=14 \cdot 4.17=9.83
\end{aligned}
$$

Problem Type 2: Calculating initial [HA]
Example: What concentration of benzoic acid is required to produce a solution with a pH of 10.70 ?

- Using given DOH, calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$
equilibrium concentration in ICE table!

$$
\begin{aligned}
p H & =14-10.70 \\
& =3.30
\end{aligned}
$$

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-3.30}=5.0 \times 10^{-4} \mathrm{M}
$$

- Construct an ICE table.

- What is the K_{a} for benzoic acid?

$$
\begin{aligned}
& \text { t is the } K_{a} \text { for benzoic acid? } \\
& K_{a}=6.5 \times 10^{.5}=\frac{\left(5.0 \times 10^{-4}\right)^{2}}{x .5 .0 \times 10^{-4}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Solve for the unknown. }
\end{aligned}
$$

Example: A 0.100 M solution of acetylsalicylic acid, $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{COOH}$, is found to have a pH of 2.27. Calculate th K_{a} for this acid.

Using given pH , calculate the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at equilibrium

$$
\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-2.27}=5.4 \times 10^{-3} \mathrm{M}
$$

$\rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$at equilibrium

- Construct an ICE table.

- What is the K_{a} expression? Solve for K_{a}.

$$
\begin{aligned}
K_{a}=\frac{\left[\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{CO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{COOH}\right]} & =\frac{\left(5.4 \times 10^{-3}\right)^{2}}{0.0946} \\
& =3.1 \times 10^{-4}
\end{aligned}
$$

CALCULATIONS FOR WEAK BASES
As with acids, most bases are weak. Using the symbol " B " for a weak base, we can represent the equilibria of weak bases in water:

$$
\overbrace{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \leftrightharpoons \mathrm{HB}^{+}{ }_{(\mathrm{aq})}+\underbrace{\mathrm{OH}-}{ }^{2 \mathrm{aq})}
$$

$$
\hat{K}_{B}=\frac{\left[\mathrm{HB}^{+}\right]\left[\mathrm{OH}^{-}\right]}{[B]}
$$

We must calculate the K_{b} for that base by using the K_{a} value of its conjugate acid
Consider the conjugate acid/base pair of $\mathrm{NH}_{4}{ }^{+}$and NH_{3} and their respective Ka and Kb expressions:

Two common terms appear in each equation.

- Multiply the two expressions together and cancel the common terms...

$$
K_{a} \times K_{b}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right)}{\left[\mathrm{NH}_{4}^{+}\right]} \times \frac{\left[\mathrm{NH}_{4}^{+}\right][\mathrm{OH}]}{\left[\mathrm{NH}_{3}\right]}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{OH}]
$$

This allows us to formulate the following relationship for conjugate acid-base pairs:

For the following weak bases, write out the equation with water and calculate the K_{b}.

$$
\begin{aligned}
& \mathrm{CN}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \frac{\mathrm{HCN}}{\mathrm{~K}_{a}}=4.9 \times 10^{-10} \\
& K_{b}=\frac{\mathrm{K}_{w}}{\mathrm{Ka}_{a}}=\frac{1.0 \times 10^{-14}}{4.9 \times 10^{-10}}=2.0 \times 10^{-5} \\
& \mathrm{NO}_{2} \\
& +\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \frac{\mathrm{HNO}}{\uparrow K_{a}}=4.6 \times 10^{-4} \\
& K_{b}=\frac{\mathrm{K}_{w}}{K_{a}}=\frac{1.0 \times 10^{-14}}{4.6 \times 10^{-4}}=2.2 \times 10^{-11}
\end{aligned}
$$

Whichever is greater is
The following species are amphiprotic. Compare K_{a} and K_{b}. what it will act as

$$
\begin{gathered}
\mathrm{HC}_{2} \mathrm{O}_{4}(\text { acid }) \\
K_{a}=6.4 \times 10^{-5}
\end{gathered}
$$

$$
\begin{aligned}
& \mathrm{HC}_{2} \mathrm{O}_{4}^{-} \text {(base) } \\
& \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \quad(\text { conjugate acid) } \\
& \mathrm{K}_{\mathrm{a}}=5.9 \times 10^{-2}
\end{aligned}
$$

$$
k_{b}=\frac{k_{\omega}}{k_{a}}=1.7 \times 10^{-13}
$$

$\mathrm{HC}_{2} \mathrm{O}_{4}$ will act
as an acid

$$
\begin{array}{rlrl}
\mathrm{H}_{2} \mathrm{PO}_{4} & \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \text {(acid) (base) } \\
K_{a}=6.2 \times 10^{-8} & \text { vs } & \mathrm{H}_{3} \mathrm{PO}_{4} \text { (conjugate acid) } \\
K_{b} & =\frac{1.0 \times 10^{-14}}{7.5 \times 10^{-3}} \\
& & =1.3 \times 10^{-12}
\end{array}
$$

will act as an acid

$$
\begin{array}{ll}
\mathrm{HPO}_{4}{ }^{2-} \text { (acid) } \quad \mathrm{VS} & \mathrm{HPO}_{4}^{2-} \text { (base) } \\
& \mathrm{H}_{2} \mathrm{PO}_{4}^{-} \text {(conjugate acid) } \\
K_{a}=2.2 \times 10^{-13} & K_{b}
\end{array}=\frac{1.0 \times 10^{-14}}{6.2 \times 10^{-8}}
$$

Will act as a base

Problem Type 1: Calculating pOM
Practice: Calculate the pH and pOH of a 0.50 M solution of HSO_{3}. amphiprotic!

$$
\begin{aligned}
& \mathrm{HSO}_{3}^{-} \text {(acid) } \\
& \mathrm{Ka}_{a}=1.0 \times 10^{-7}
\end{aligned} \mathrm{~K}_{b}=\frac{\mathrm{HSO}_{3}^{-} \text {(base) }}{\left.\mathrm{Ka}^{-7} \mathrm{H}_{2} \mathrm{SO}_{3}\right)}=\frac{1.0 \times 10^{-14}}{1.5 \times 10^{-2}}=6.7 \times 10^{-13}
$$

$$
\begin{aligned}
& \mathrm{HSO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{SO}_{3}{ }^{2-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& O M \quad O M \\
& +x \\
& +x \\
& x \\
& x \\
& K_{a}=1.0 \times 10^{.7}=\frac{x^{2}}{0.50-x} \text { *assume } 0.50-x \cong 0.50 \\
& x=\sqrt{(0.50)\left(1.0 \times\left(0^{-7}\right)\right.} \\
& p H=-\log \left(2.2 \times 10^{-4}\right) \\
& =3.65 \\
& =2.2 \times 10^{-4}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
& \mathrm{POH}=14-3.65 \\
& =10.35
\end{aligned}
$$

Practice: Calculate the pH of a solution containing 0.20 M CN -
\rightarrow weak base

$$
\begin{aligned}
& K_{b}=\frac{1.0 \times 10^{-14}}{4.9 \times 10^{-10}}=2.0 \times 10^{-5}=\frac{x^{2}}{0.20 \cdot x} \quad \text { *assume } 0.20 . x \cong 0.20 \\
& x=\sqrt{(0.20)\left(2.0 \times 10^{-5}\right)} \\
& =2.0 \times 10^{-3}=\left[\mathrm{OH}^{-}\right] \\
& \mathrm{POH}=-\log \left(2.0 \times 10^{.3}\right) \\
& =2.70 \\
& p H=11.30
\end{aligned}
$$

Practice: What concentration of NH would be required to produce a solution with $\mathrm{pH}=10.50$?

$$
\begin{aligned}
& \begin{array}{cc}
\mathrm{NH}_{3} \\
\text { I } \\
\text { C } \\
\text { C } & -3.2 \times 10^{-4} \\
E & x-3.2 \times 10^{-4}
\end{array} \\
& \begin{aligned}
\mathrm{POH} & =14 \cdot 10.50 \\
& =3.50
\end{aligned} \\
& =3.50 \\
& {[\mathrm{OH} \cdot]=10^{-3.50}} \\
& =3.2 \times 10^{-4} \mathrm{M} \\
& \begin{aligned}
\mathrm{H} \mathrm{ZO}_{2} \rightleftharpoons \mathrm{NH}_{4}{ }^{+} & +\mathrm{OH}^{-} \\
& \mathrm{OM} \\
& \\
& \\
&
\end{aligned} \\
& +3.2 \times 10^{-4}+3.2 \times 10^{-4} \\
& 3.2 \times 10^{-4} \quad 3.2 \times 10^{-4} \\
& K_{b}=\frac{\left(3.2 \times 10^{-4}\right)^{2}}{x-3.2 \times 10^{-4}}=\frac{K_{w}}{K_{a}\left(\mathrm{NH}_{4}{ }^{+}\right)}=\frac{1.0 \times 10^{-4}}{5.6 \times 10^{-10}} \\
& \frac{\left(3.2 \times 10^{-4}\right)^{2}}{x \cdot 3.2 \times 10^{-4}}=1.8 \times 10^{-5} \\
& x=\begin{array}{c}
6.0 \times 10^{-3} \mathrm{M} \\
=\left[\mathrm{NH}_{3}\right]
\end{array}
\end{aligned}
$$

Problem Type 3: Calculating K_{b}
Practice: A solution is prepared by dissolving 9.90 g of the weak base hydroxylamine, $\mathrm{NH}_{2} \mathrm{OH}$ in enough water to produce 500.0 mL of solution. The pH of the solution is found to be 9.904. Calculate the K_{b} or hydroxylamine.

$$
\begin{aligned}
& \underset{\left[\mathrm{NH}_{2} \mathrm{OH}\right]}{\text { Initial }}=\frac{9.90 \mathrm{~g}}{0.5000 \mathrm{~L}} \times \frac{1 \mathrm{~mol}}{33.0 \mathrm{~g}}=0.600 \mathrm{M} \\
& \mathrm{NH}_{2} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{3} \mathrm{OH}^{+}+\mathrm{OH}^{-} \\
& 10.600 \mathrm{M} \text { OM } \mathrm{OM} \\
& \text { c }-8.02 \times 10^{-5} \\
& E \quad 0.600 \mathrm{M} \\
& \mathrm{PH}=9.904 \\
& \mathrm{POH}=4.096 \\
& {\left[\mathrm{OH}^{-}\right]=10^{-4.096}} \\
& +8.02 \times 10^{-5}+8.02 \times 10^{-5} \\
& 8.02 \times 10^{-5} \quad 8.02 \times 10^{-5} \\
& K_{b}=\frac{\left(8.02 \times 10^{-5}\right)^{2}}{0.600} \\
& =11.07 \times 10^{-8} \\
& =8.02 \times 10^{-5}
\end{aligned}
$$

Practice: A 0400 M solution of the weak base methylamine, $\mathrm{CH}_{3} \mathrm{NH}_{2}$, is found to have a pH of 13.30 . Calculate the K_{b} and $\mathrm{p} / \mathrm{L}_{\mathrm{b}}$ of methylamine.

$$
\begin{aligned}
& \mathrm{POH}=0.70 \quad\left[\mathrm{OH}^{-}\right]=10^{-0.70}=0.20 \mathrm{M}
\end{aligned}
$$

$$
\begin{aligned}
& K_{b}=\frac{(0.20)^{2}}{0.20}=0.20 \\
& p K_{b}=-\log K_{b} \\
& =-\log (0.20) \\
& =0.70
\end{aligned}
$$

