Acid-Base Equilibrium V Name: Date: Block: 1. Hydrolysis ## Hydrolysis In previous Chemistry courses, you have learned about neutralization reactions where: $$HY + XOH \rightarrow XY + H_2O$$ The "salt" produced in neutralization reactions are actually acidic or basic. The ions that make up the salt behave as weak acids or bases. $$XY (salt) \rightarrow X^+ + Y^-$$ Consider the following... $$HCl + NaOH \rightarrow ___ + H_2O$$ $$HNO_2 + NaOH \rightarrow ____ + H_2O$$ $$C_6H_5OH + NH_4OH \rightarrow ____ + H_2O$$ $$C_6H_5COOH + Mg(OH)_2 \rightarrow$$ _____ + H_2O Circle the following salts whose ions will hydrolyze (react with water!) when dissociated in water. NH₄Cl Na₂CO₃ RbClO₄ Li₂SO₃ BaI₂ NH₄HCOO KIO₃ CsF CaBr₂ Decide if each of the following salts will produce an acidic, basic or neutral solution when combined with water. | | | K _a | K_b | pH
(A, B, or N) | |---------|---------------------------------|------------------------------|------------------------------|--------------------------| | 1. | Na ₃ PO ₄ | | | | | 2. | KH_2PO_4 | | | | | 3. | Na ₂ CO ₃ | | | | | 4. | KHSO ₄ | | | | | 5. | CaCO ₃ | | | | | 6. | NaNO ₃ | | | | | 7. | $(NH_4)_2C_2O_4$ | | | <u> </u> | | 8. | NH ₄ Cl | | | | | 9. | Na ₂ SO ₃ | | | | | 10. | $FeCl_3$ | | | <u> </u> | | 11. | KCH ₃ COO | | | <u> </u> | | Most Ac | <u>iidic</u> | Order the above substances f | from most acidic to most bas | ic.
<u>Most Basic</u> | ## Example: | of this solut | uple of Mg(HCO ₃) ₂ is dissolved in enough water to make 500.0 mL of solution. Calculate the pH ion. at is the concentration of Mg(HCO ₃) ₂ ? | |---------------|---| | • Wha | at is initial concentration of each ion? (*Hint – dissociation equation required) | - Which ion produced will hydrolyze? - What is the equation when it reacts with water? Make an ICE table. • Calculate pOH and pH. | A 200.0 mL aqueous solution of 0.50 M Na_2CO_3 is diluted to 500.0 mL. Calculate the pH of the resulting solution. | |--| The K_b for pyridine, C_5H_5N , a weak base, is 4.7×10^{-9} . Calculate the pH of a 0.10 M solution of $C_5H_5NHNO_3$ | Complete: Hebden Pg. 148 #69, 70, 73 |