Acid-Base Equilibrium V

Name: Date: Block:

1. Hydrolysis

Hydrolysis

In previous Chemistry courses, you have learned about neutralization reactions where:

$$HY + XOH \rightarrow XY + H_2O$$

The "salt" produced in neutralization reactions are actually acidic or basic. The ions that make up the salt behave as weak acids or bases.

$$XY (salt) \rightarrow X^+ + Y^-$$

Consider the following...

$$HCl + NaOH \rightarrow ___ + H_2O$$

$$HNO_2 + NaOH \rightarrow ____ + H_2O$$

$$C_6H_5OH + NH_4OH \rightarrow ____ + H_2O$$

$$C_6H_5COOH + Mg(OH)_2 \rightarrow$$
_____ + H_2O

Circle the following salts whose ions will hydrolyze (react with water!) when dissociated in water.

NH₄Cl Na₂CO₃ RbClO₄ Li₂SO₃ BaI₂ NH₄HCOO KIO₃ CsF CaBr₂

Decide if each of the following salts will produce an acidic, basic or neutral solution when combined with water.

		K _a	K_b	pH (A, B, or N)
1.	Na ₃ PO ₄			
2.	KH_2PO_4			
3.	Na ₂ CO ₃			
4.	KHSO ₄			
5.	CaCO ₃			
6.	NaNO ₃			
7.	$(NH_4)_2C_2O_4$			<u> </u>
8.	NH ₄ Cl			
9.	Na ₂ SO ₃			
10.	$FeCl_3$			<u> </u>
11.	KCH ₃ COO			<u> </u>
Most Ac	<u>iidic</u>	Order the above substances f	from most acidic to most bas	ic. <u>Most Basic</u>

Example:

of this solut	uple of Mg(HCO ₃) ₂ is dissolved in enough water to make 500.0 mL of solution. Calculate the pH ion. at is the concentration of Mg(HCO ₃) ₂ ?
• Wha	at is initial concentration of each ion? (*Hint – dissociation equation required)

- Which ion produced will hydrolyze?
- What is the equation when it reacts with water? Make an ICE table.

• Calculate pOH and pH.

A 200.0 mL aqueous solution of 0.50 M Na_2CO_3 is diluted to 500.0 mL. Calculate the pH of the resulting solution.
The K_b for pyridine, C_5H_5N , a weak base, is 4.7×10^{-9} . Calculate the pH of a 0.10 M solution of $C_5H_5NHNO_3$
Complete: Hebden Pg. 148 #69, 70, 73