

1. Buffers

Buffers

An acid-base <u>buffer</u> is a solution that resists changes in pH following the addition of relatively small amounts of a strong acid or base.

Example: Consider a solution of 1.0 M acetic acid.

 $CH_{3}COOH_{(aq)} + H_{2}O_{(l)} \rightleftharpoons CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$

• Acetic acid is a weak acid – only a small percent of the weak acid is ionized

	CH ₃ COOH (aq)	+	H ₂ O (l)	4	CH ₃ COO ⁻ (aq)	+	H ₃ O+ (aq)
I	1.0M				0 M		0 M
С	- x				+ x		+ x
Е	1.0M – x				Х		Х

 $K_a =$

[CH₃COOH]

[CH₃COO-]

If a **strong base** was added to a solution, acetic acid will be there to neutralize the base.

If a **strong acid** was added, there would be no species to neutralize it.

In order for a buffer solution to be effective, EQUIVALENT CONCENTRATIONS of a weak acid and a conjugate base must be in solution.

A **regular** acetic acid solution...

An acetic acid **buffer** solution...

Regular CH₃COOH solution	Buffer CH ₃ COOH solution		
$CH_{3}COOH_{(aq)} + H_{2}O_{(l)} \rightleftharpoons CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$	$CH_{3}COOH_{(aq)} + H_{2}O_{(l)} \leftrightarrows CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$		

- Consider the following pairs of solutions:a) Circle the pairs of chemical species below that could be used to prepare a buffer solution.b) For the pairs that you circled, write the buffer equation.

HNO_3 and $NaNO_3$	KF and HF	HNO_2 and HNO_3	HCOOH and LiHCOO
NaHSO4 and Na2SO4	K_2CO_3 and $K_2C_2O_4$	HCl and NaCl	KH ₂ PO ₄ and K ₂ HPO ₄

(Acid) Buffer Equation:

 $CH_{3}COOH_{(aq)} + H_{2}O_{(l)} \leftrightarrows CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$

Because ...

Then ...

Or in general...

The hydronium ion concentration (and therefore the pH) of a buffer solution depends on:

- 1. the K_a value.
- 2. the **ratio** of the concentration of the weak acid to its conjugate base.

Using our acetic acid example...

 $CH_{3}COOH_{(aq)} + H_{2}O_{(l)} \leftrightarrows CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$

 $[H_3O^+] =$

pH =

Now, let's shift our system!

We now **add 0.10 mol HCl** to 1.0 M buffer solution with no volume change.

- Would we expect the pH to decrease or increase?
- Would the system shift left or right?

$$\begin{array}{c} CH_{3}COOH_{(aq)} + H_{2}O_{(l)} \leftrightarrows CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)} \\ 1.0 \text{ M} & 1.0 \text{ M} \end{array}$$

 $[H_3O^+] =$

pH =

We now **add 0.10 mol NaOH** to 1.0 M buffer solution with no volume change.

- Would we expect the pH to decrease or increase?
- Would the system shift left or right?

$$\begin{array}{c} CH_{3}COOH_{(aq)} + H_{2}O_{(l)} \leftrightarrows CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)} \\ 1.0 \text{ M} \\ \end{array}$$

Practice.

Consider a 1.0 M hydrofluoric acid buffer system.

- a. What is the equation?
- b. Calculate the pH of an undisturbed system.

c. Calculate the pH when 0.050M hydrobromic acid is added to the original buffer system.

d. Calculate the pH when $0.050 \text{M} \text{Mg}(\text{OH})_2$ is added to the original buffer system.

Hebden Workbook Pg. 181 # 131-133, 136, 137