

1. Buffers

Buffers

An acid-base <u>buffer</u> is a solution that resists changes in pH following the addition of relatively small amounts of a strong acid or base.

17-182

Example: Consider a solution of 1.0 M acetic acid.

 $CH_3COOH_{(aq)} + H_2O_{(l)} \rightleftharpoons CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$

			ИО				U.O.		
	CH ₃ COOH (aq)	+	$H_2 O_{(l)}$	5	CH ₃ COO ⁻ (aq)	+	H ₃ O ⁺ (aq)		
Ι	1.0M [^]				0 M		0 M		
С	- x				+ x		+ x		
Е	1.0M 1.0M – x				4.2× 10-3M		4.2×10-3M		
$K_{a} = 1.8 \times 10^{-5} = \frac{x}{1.0 - x}$ $K_{a} = \int (1.0) (1.8 \times 10^{-5})$									
	Unbuffered acetic acid Solution								

• Acetic acid is a weak acid – only a small percent of the weak acid is ionized

ĪV

If a **strong base** was added to a solution, acetic acid will be there to neutralize the base.

If a **strong acid** was added, there would be no species to neutralize it.

In order for a buffer solution	to be effective, EQUIVALENT CONCENTRATIONS of conjugate base must be in solution.	of a weak acid and a
A regular acetic acid solution	EWAJ	[CB]
An acetic acid buffer solution	[CB]	EWAJ

 $CH_3COOH_{(aq)} + H_2O_{(l)} \Leftrightarrow CH_3COO^{-}_{(aq)} + H_3O^{+}_{(aq)}$

The hydronium ion concentration (and therefore the pH) of a buffer solution depends on:

- 1. the K_a value.
- 2. the **ratio** of the concentration of the weak acid to its conjugate base.

Using our acetic acid example... 1.0M 1.0M $CH_{3}COOH_{(aq)} + H_{2}O_{(1)} \leq CH_{3}COO^{-}_{(aq)} + H_{3}O^{+}_{(aq)}$ $[H_{3}O^{+}] = K\alpha \left(\frac{[CH_{3}COOH)}{[CH_{3}COO^{-}]} \right)$ $= 1.8 \times 10^{-5} \left(\frac{1.0}{1.0} \right) = (.8 \times 10^{-5}M)$ $pH = -10g (1.8 \times 10^{-5})$ $= 4.744 \leftarrow Undisturbed$ buffer solution

Now, let's shift our system! $[SA] = [H_30^+]$

We now **add 0.10 mol HCl** to 1.0 M buffer solution with no volume change.

• Would we expect the pH to decrease pr increase?

Practice.

equal [] of WA & CB

Consider a 1.0 M hydrofluoric acid buffer system.

/WA

a. What is the equation?

 $HF + H_{20} \rightleftharpoons F^{-} + H_{30} + H_{30}$ I.OM

b. Calculate the pH of an undisturbed system.

$$[H_{3}0^{+}] = K_{A} \left(\begin{array}{c} (HF) \\ (F-1) \end{array} \right)$$

$$= 3.5 \times 10^{-4} \left(\begin{array}{c} 1.0 \\ 1.0 \end{array} \right)$$

$$= 3.5 \times 10^{-4} M$$

$$SA = (H_{3}0^{+})$$

$$SA = (H_{3}0^{+})$$

$$SA = (H_{3}0^{+})$$

c. Calculate the pH when 0.050M hydrobromic acid is added to the original buffer system.

$$HF + H_{2}D = F^{-} + H_{3}D^{+}$$

$$\stackrel{1.0M}{+ 0.050M} = 0.050M$$

$$\stackrel{-0.050M}{- 0.050M} = 0.95M$$

$$I.05M = 0.95M$$

$$I.05M = 0.95M$$

$$IH_{3}D^{+}J = Ka \left(\frac{[HF]}{[F^{-}]}\right)$$

$$= 3.5 \times 10^{-4} \left(\frac{1.05}{0.95}\right) = 3.9 \times 10^{-4}M$$

d. Calculate the pH when 0.050M Mg(OH)₂ is added to the original buffer system.

$$HF + HzO = F^{-} + HaO + HzO = I.0M + HaO + HzO = I.0M + HaO + HzO = I.0M + HaO + HzO +$$

Hebden Workbook Pg. 181 # 131-133, 136, 137