

WA

1. Strong Acid & Strong Base

HCl (aq) + NaOH (aq) \rightarrow NaCl (aq) + H₂O (1)

- Typical strong acid + strong base neutralization type of question. •
 - (1) Dilution
 - (2) Neutralization
 - (3) Acidic or basic?

50.0 mL of 0.100 M acetic acid is titrated with 0.150 M NaOH.

What do you think the pH curve will look like?

Because the pH meter is measuring from the beaker, we always have to think about dilution !

We will be calculating (and comparing) the pH at 4 points on the curve:

- 1. Before any titrant is added (Weak acid) 2. Before reaching equivalence point (buffer) 3. At equivalence point (salt hydralysis)
- 4. Beyond the equivalence point (strong base)

Calculate the pH of the solution produced in the reaction flask at the following points:

1) The pH of the solution of acetic acid when no NaOH is yet added.

• This is a weak acid calculation.

$$CH_{3}COOH + H_{2}O \rightleftharpoons CH_{3}COO^{-} + H_{3}O^{+}$$

 $1 \quad 0.100M$
 $C -X$
 $E 0.100M - X$
 $X = 1.8 \times 10^{-5} = \frac{\chi^{2}}{0.100 - \chi}$
 $X = 1.3 \times 10^{-3}M = [H_{3}O^{+}]$
 $PH = 2.87$

2) When 10.0 mL of 0.150 M NaOH has been added.

- Acts very similarly to a buffer as the added hydroxide ions reacts with acetic acid to produce acetate ions.
- What are the diluted concentrations of reactant acid and base before the reaction (initial concentrations)?

• CH₃COOH and CH₃COO⁻ creates an acid buffer.

$$[H_{30}^{+}] = K_{a} \left(\frac{[cc:a]}{[bes]} \right)$$

= 1.8×10⁻⁵ $\left(\frac{0.0583}{0.0250} \right) = 4.2×10^{-5} M$

• Calculate the pH.

$$pH = -\log(4.2 \times 10^{-5})$$

= $[4.38]$

4) Beyond the equivalence point when 60.0 mL of NaOH added

$$\begin{bmatrix} CH_{3}COOH \end{bmatrix} \qquad \begin{bmatrix} N \land OH \end{bmatrix} \\ (0.100)(50.0) = C_{2}(110.0) \\ (0.150)(60.0) \\ = C_{2}(110.0) \\ C_{2} = 0.0455 + 10.0455 \\ C_{2} = 0.0818 \\ O \\ C_{3} = 0.0818 \\ O \\ C_{4} = 0.0818 \\ O \\ C_{5} = 0.0455 \\ C_{5} = 0$$

SUMmary of Titrations
Weak acid w/ strong base
Second with the strong base
Second with the strong base
Second with the strong base of the strong base
1. HA + H₂O
$$\rightleftharpoons$$
 (B + H₃O⁺ [ICE]
2. ICE w/ unknowns \rightarrow has Ka \rightarrow get [H₃O⁺] \rightarrow pH
Second (2) : Some titrart added (before equivalence point)
1. Find diluted [HA] and [TB]
2. HA + TB \rightleftharpoons (CB) + H₂O [ICE]
3. Acid buffer : HA + H₂O \rightleftharpoons (B + H₃O⁺
4. [H₃O⁺] = Ka ((HAT)) \rightarrow pH
Second (3) : At equivalence point
1. Find diluted [HA] and [TB]
2. HA + TB \rightleftharpoons (CB) + H₂O [ICE]
3. [CB] hydrolysis: CB + H₂O \bowtie (HA + (HT))
3. [CB] hydrolysis: CB + H₂O \rightleftharpoons HA + (OH⁻) [ICE]
3. Scenario (1): Boyond equivalence point
4. Kb from [OH⁻] \rightarrow pOH \rightarrow pH
Second clubbed [HA] and [TB]
2. HA + TB \rightleftharpoons CB + H₂O [ICE]
3. [TB] = [OH⁻] \rightarrow pOH \rightarrow pt]

HA = weak acid

TB = titrout base (strong)

CB = conjugate base

Practice: WA SB
A2004 mL sample of 0.450 M HN0/ is thrated with a 0.500 M MaOH solution. What will the pH be in the
rescale of the following points:
a) 2.0 mL before exactly halfway to the equivalence point?
HND₂ + NAOH
$$\rightarrow$$
 NaND₂ + H₂O
20.0 mL HND₂ × $\frac{1 L}{|000 \text{ mL}|}$ × $\frac{0.450 \text{ mol} \text{ HND}_2 \times \frac{1 \text{ mol} \text{ MABH}}{1 \text{ L}|} \times \frac{1 L}{|000 \text{ HND}_2 \times \frac{1 \text{ mol} \text{ MABH}}{1 \text{ L}|} \times \frac{1 L}{|000 \text{ mL}|} \times \frac{0.450 \text{ mol} \text{ HND}_2 \times \frac{1 \text{ mol} \text{ MABH}}{1 \text{ L}|} \times \frac{1 L}{|0.500 \text{ mol}|} = 0.0180 \text{ L}$
(18.0 mL + 2) = 2.0 mL = 7.0 mL NaOH
[HND₂] [NaOH]
(0.450)(20.0) = C₂ (27.0) [NaOH]
(0.450)(20.0) = C₂ (27.0) [NaOH]
(0.450)(20.0) = C₂ (27.0) [NaOH] = 0.130M
HND₂ + WaOH \rightleftharpoons WaND₂ + H₂O
1 0.333M 0.130M 0 (130M)
E 0.203M 0 (130M) + 0.130M
E 0.203M 0 (130M) + 0.130M
E (HND₂⁻¹) = Ka ((HND₂⁻¹))
= 4, $b \times 10^{-4}$ ($\frac{0.203}{0.130}$)
= 7.2 × 10^{-4} M
PH = 3.14

b) At equivalence po	» NADH : 18.(DmL		
(0.450)(20.0) (HNO2)=) = Cz(38.0) 0.237M	[NAOH] (0.50 [N) 0)(18.0)= 1a0H]= 0	$\frac{c_2}{38.0}$
HNO z 1 0.237M	+ Na OH 0.237M	→ Hand 0	2 +	H20 (
C-0.237M	- 0.237M	+ 0.237	1	
ΕO	0	0.237M WB hydro	Tysi s	
NO2 ⁻ 1 0.237M C -X E 0.237-X	$+ H_zO$		+ 0H- 0 +X X	
$K_b = \frac{K_w}{K_a(HNO_z)}$	$=\frac{1.00 \times 10^{-14}}{4.6 \times 10^{-4}}=$	$2.2 \times 10^{-11} = -0$	× ² .237	+assume 0.237-z ≈ 0.237
	x=23	3×10-6M=	[он-]	
POH =	- log (2.3×10 5.64	5-6)		
PH =	8.36			

3. Strong Acid & Weak Base

 $\rm NH_{3 (aq)} + \rm HCl_{(aq)} \rightarrow \rm NH_{4^+ (aq)} + \rm Cl_{-(aq)}$

100.0 mL of 0.050 M $\rm NH_3$ is titrated with 0.10 M HCl.

Calculate the pH of the solution produced in the reaction flask at the following points:

1) Before any HCl is added.

PH = 10.98

2) At the midpoint of the titration.

PH = 9.25

pH = 5.37

4) When 60.0 mL of HCl has been added.

Practice:

Calculate the pH of the solution produced in the reaction flask when 13.00 mL of 0.100 M HClO₄ has been added to 25.00 mL of 0.100 M NaNO₂. (This is just beyond halfway to the equivalence point.)

Indicators

We measure pH using either an acid-base indicator or a pH meter. Acid-base indicators are weak organic acids whose conjugate pairs display different and normally intense colours.

Acid-base indicators are complex organic molecules and refer to them as simply "HIn."

- The pH value at which the indicator exhibits a colour change should be close to the pH at equivalence point. ($\underline{red} \rightarrow \underline{drange} \leftarrow \underline{velow}$).
- When the colour changes, (reached $+ \frac{1}{100}$ point) it is an indication that the titration has reached equivalence point. At this point, $Ka = [H_30^+]$ blc $[HI_n]$

pH at equivalence point	[H ₃ O+]	Indicator	Colour exhibited
11.05	8.9×10-12	Alizarin yellow	Orange
6.8	1.6×10-7M	Bronothymol Blue	green
9.1	7.9×10-10 M	phenolphthalei	▶ Light pink
8.8	1.6×10-7 M	Thymol blue	Green
2.0	$1.0 \times 10^{-7} M$	Thymol blue	Orange

* Looking for equivalence point! (Scenario 3)

When 1.0 M NH₃ is titrated with 1.0 M HCl, the most suitable indicator is:

 $5.6 \times 10^{-10} = \frac{\times^2}{0.25}$

pOH = 4.93

pH=9.07

 $X = \int (5. L \times 10^{-10}) (0.25)$

x=1.2×10-5M=[0H-]

$$H^{*}CH_{3}Cb0 + H_{2}0 \rightleftharpoons CH_{3}co0H + M=0H$$

$$I \quad 0.25M \qquad 0 \qquad 0$$

$$+x \qquad +x \qquad +z$$

$$I \quad 0.25-x \qquad x \qquad x$$

$$J \quad assume \quad 0.25-x \subseteq 0.25$$

Hebden Workbook Pg. 162 #108-116

E