Chemistry 12 Acid Base Part 1 Review Package

Name: Ce Date: Ce Block:

I. <u>Multiple Choice</u>:

(

1. In which of the following is HSO3⁻ acting as a Brønsted-Lowry acid?

A. $HSO_{3^{-}} + H_2O \Rightarrow H_2SO_3 + OH^{-}$ B. $NH_3^{3} + H_3^{3}O_3^{-} \Rightarrow NH_4 + SO_3^{2-}$ C. $HSO_{3^{-}} + HPO_4^{2-} \Rightarrow H_2SO_3 + PO_4^{3-}$ D. $H_2C_2O_4 + HSO_3^{-} \Rightarrow HC_2O_4^{-} + H_2SO_3$

2. What is the conjugate base of H₂PO₄-?

		\frown	
A. OH-	B. PO ₄ ³⁻	(C.)HPO₄²-	D. H ₃ PO ₄

3. Which of the following describes the relationship between acid strength and K_{α} value for weak acids?

	<u>Acid Strength</u>	<u>Ka</u>
Α.	decreases	increases
Β.	decreases	remains constant
C.)	increases	increases
D.	increases	decreases

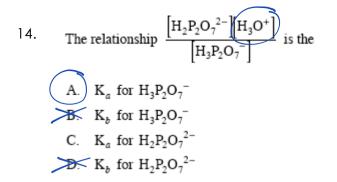
4. Which of the following is the strongest acid that can exist in an aqueous solution?

A. C	2-	B. NH ₂ -	C. H ₃ O ⁺	D.HClO₄
5. What is t	he pH of a 0.050	OM KOH solution?	14 - (-109 (0.05)	•))
A. 0.	.30	B. 1.30	C.)12.70	D. 13.70
6. What is t	he value of K_b for	or H ₂ PO ₄ -?	Ka (H3POr)	
(A.).	.3 x10 ⁻¹²	B. 6.2 x10 ⁻⁸	C. 1.6 x10 ⁻⁷	D. 7.5 x 10 ⁻³

7. Which of the following is the net ionic equation for the neutralization of $HNO_{3(aq)}$ with $Sr(OH)_{2(aq)}$?

 $A. H^{+}_{(aq)} + OH^{-}_{(aq)} + H_{2}O_{(l)}$

 $B. Sr^{2+}_{(aq)} + 2NO_{3}_{(aq)} - Sr(NO_{3})_{2(s)}$


C. $2HNO_{3(aq)} + Sr(OH)_{2(aq)} \leftrightarrow Sr(NO_3)_{2(aq)} + 2H_2O_{(1)}$

D. $2H^{+}_{(aq)} + 2NO_{3}_{(aq)} + Sr^{2+}_{(aq)} + 2OH^{-}_{(aq)} - Sr^{2+}_{(aq)} + 2NO_{3}_{(aq)} + 2H_{2}O_{(II)}$

8. Water will act as an acid with which of the following?

- I. H₂CO₃ II. HCO₃- ►
- III. CO₃²⁻ D. II and III only. C. I and II only. A. I only. B. III only. 9. Which of the following 1.0M solutions will have the greatest electrical conductivity? acia D. H₃PO₄ HI B. H₂S C. HCN 10. An acid is added to water and a new equilibrium is established. The new equilibrium can be described by: A.) pH < pOH and K_w = 1.0×10^{-14} B. pH < pOH and K_w < 1.0 x 10⁻¹⁴ C. pH > pOH and $K_w = 1.0 \times 10^{-14}$ D. pH > pOH and $K_w > 1.0 \times 10^{-14}$ 11. Consider the following equilibrium: $2H_2O_{(I)} + energy \Rightarrow H_3O^+_{(aq)} + OH^-_{(aq)}$ The [H₃O⁺] will decrease and the K_w will remain constant when will affect A. a strong acid is added. C. the temperature is increased. B. a strong base is added. D. the temperature is decreased. 12) Which of the following graphs describes the relationship between $[H_3O^+]$ and pH ? А. Β. H₃O⁺ [H₃O⁺] pН pН C. D. H₃O⁺ H₃O⁺ pН pН
- 13) When the [H₃O+] in a solution is increased to twice the original concentration, the change in pH could be from

15. Which of the following describes the relationship between acid strength and Ka value for weak acids?

	Acid Strength	K _a		
(A.)	increases	increases		
B.	increases	decreases		
C.	decreases	increases		
D.	decreases	remains constant		
16. The value of K _b for HPO ₄ ²⁻ is: $K_{b} = \frac{K_{b}}{K_{a} (H_{2}PO_{4}^{-})}$ A. 2.2 x 10 ⁻¹³ B. 6.2 x 10 ⁻⁸ C. 1.6 x 10 ⁻⁷ D. 4.5 x 10 ⁻²				
17. What volume of 0.100M NaOH is required to completely neutralize 15.00mL of 0.100M H₃PO₄?				
—A. 5.0	0mL B. 1.	5.0 mL C	. 30.0mL	— D. 45.0 mL
18. What is the pH of the solution formed when 0.060 moles NaOH is added to 1.00 L of 0.050M HCI? $[oH^{-}]_{XS} = 0.010$ A. 2.00 B. 7.00 $pOH = 2.00$ pH = 12.00 19. The conjugate acid of C ₆ H ₅ NH ₂ is: $C_{12.00}$ 19. The conjugate acid of C ₆ H ₅ NH ₂ is: $C_{2} = 0.065$ or $C_{2} = 0.055$ or $C_{2} =$				
A. C ₆ ł	H₅NH⁻ B. C	GH₅NH₃ C	. C ₆ H ₅ NH ₂ +	D.C6H₅NH₃⁺

-W.A.

20. Which of the following is a property of 1.0M HCl but not a property of 1.0M CH₃COOH ?

A. turns litmus red	C. has a pH less than 7.0
B, ionizes completely	D. produces H ₃ O ⁺ in solution

21. In a 1.0M HF solution, the concentration of HF, F⁻¹ and OH⁻¹, from highest to lowest is:

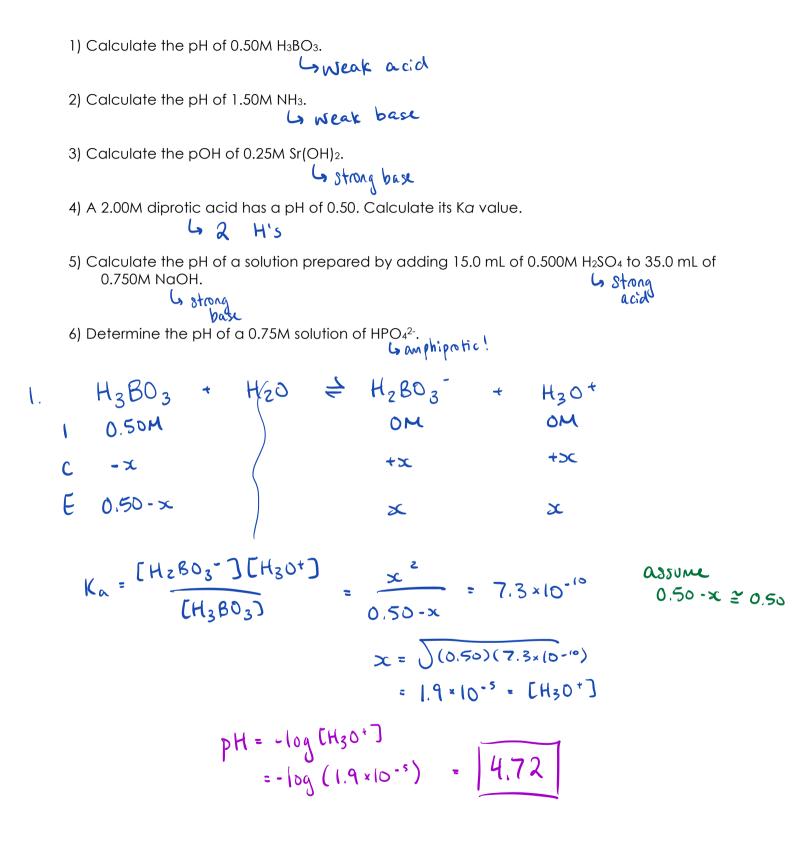
A.[HF]>[F ⁻¹]>[OH ⁻] B. [F ⁻]>[HF]>[OH ⁻¹]	C. [OH ⁻¹]>[HF]>[F ⁻¹]
B. [F-]>[HF]>[OH-1]	D. [OH ⁻¹]>[F ⁻¹]>[HF]

22. In which of the following reactions is water behaving as a Brønsted-Lowry acid? A. $2H_2O = 2H_2 + O_2$

B HC C. NH D. NH	$\begin{array}{l} 20 \Rightarrow 2112 + 022 \\ 3 + H_2O \Rightarrow H_3O^+ + \\ 3 + H_2O \Rightarrow NH_4^+ + \\ 4^+ + H_2O \Rightarrow H_3O^+ - \end{array}$	+ NH ₃		k.	
23. What	is the [OH ⁻] of a s	solution with[H_3O^+]	=9.3 x 10 ⁻² M?	$H-J = \frac{KW}{[H_30]}$	·Ĵ
Α.	9.3 x 10 ⁻¹⁶ M	B. 8.6 x 10 ⁻¹³ M	C.1.1 x 10 ⁻¹³ M	D. 9.3 x 10 ⁻² M	
24. The pł	H of 0.10M HNO3		C. 1.26	D. 13.00	
water?			dding 50.0mL of 0.50		N&OH (0.50)(50.0) = Cz
	0.30 of the following	B. 1.001.0M solutions will h	C.)1.08	D. 12.92	Cz = 0.083 POH = - log (0.083)
(A.	HCI	B. HCN	C. H ₃ PO ₄	D. H ₂ C ₂ O ₄	
27. In an a	aqueous solution	of NaCl, the pH is:			
B.e C.	equal to 7 and th greater than 7 a	he solution is acidic ne solution is neutra nd the solution is bo nd the solution is ac	l. asic.	ators	

28. How many moles of KOH are necessary to completely neutralize 42.0mL of 3.00M HCI?

A. 0.0630 moles	<u> </u>
B. 0.126 moles	D. 3.00 moles


Weakest acid 29. The solution with the lowest electrical conductivity is: A. 0.10M H₂S C. 0.10M H₂SO₃ B. 0.10M HNO₂ D. 0.10M NH4CI 30. The solution with the lowest pH is: Strongest acid 1.0M HF C. 1.0M HCOOH B. 1.0M HCN D. 1. 0M CH₃COOH 31. As the $[H_3O^+]$ in a solution decreases, the $[OH_-]$: A.) increases and the pH increases. B. increases and the pH decreases. C. decreases and the pH increases. D. decreases and the pH decreases. p=-log 32. The value of pKw at 25°C is; pkw - - log (1.00 × 10-14) A. 1. 0 x 10⁻¹⁴ 2. 7.00 B. 1. 0 x10-7 D.)14.00 e×. [H30+] 1.0×10-7→10×10-6 pH=7→ pH=6 33. Consider the following equilibrium: $2 H_2O + energy \Rightarrow H_3O^+ + OH$ In pure water at a temperature of 50°C, A) pH < 7 & pH < 7B, pH + pOH = 14 $-C.Kw = 1.0 \times 10^{-14}$ D. [OH-]<1.0 x 10⁻⁷ -log (2.5) 34. What is the pOH of 2.5 M NaOH? C. 0.40 A. 10.40 B. 0.0032 D. 13.60 $-\log(0.010) = 2.00$ 35. A 0.010M acid solution has a pH of 2.00. The acid could be D. CH₃COOH $[SA] = [H_3C]$ A. HNO3 C. HCOOH B. H₂SO₃ 36. Consider the following: I. PO₄³⁻ II. HPO42-III. H₂PO₄-IV. H₃PO₄ The term amphiprotic can be used to describe: B. II and III only. C. I, II and III only. A. I only. D. II, III and IV only. 37. Calculate the [H₃O+] in a solution prepared by mixing 25.0mL of 1.0M HCl with 50.0mL of 0.50M KOH. Kw = [H30+][0H-] (D.)1.0 x 10⁻⁷ M C. 0.25 M B. 0.50 M A. 1.0 M KOH HCL $(1.0)(25.0) = C_2(75.0)$ $(0.50)(50.0) = C_2(75.0)$

 $C_2 = 0.333$

 $C_1 = 0.333$

Neutras

II. <u>Short Answers</u>:

2.
$$NH_3 + H_EO \ge NH_4 + OH^-$$

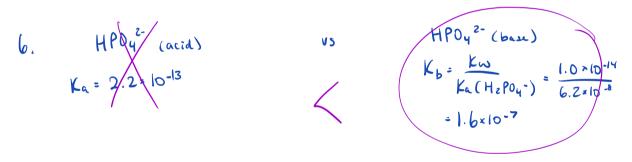
1 1.5 M OM OM
C -x $+x +x$
E 1.5 - x x x

$$K_{b} = \frac{K_{w}}{K_{a}(NH_{4}^{4})} = \frac{1.0 \times 10^{-14}}{5.6 \times 10^{-10}} = 1.8 \times 10^{-5} = \frac{x^{2}}{1.5 - x}$$

$$s_{c} = \int (1.5)(1.8 \times 10^{-5})$$

$$= 5.2 \times 10^{-3} = 0.000$$

$$POH = -\log(0H^{-})$$


$$PH = 14 - 2.28$$

$$= -\log(5.2 \times 10^{-3}) = 2.28$$

3.
$$Sr(OH)_2 \rightarrow Sr^{21} + 2OH^{-1}$$

0.25M 0.50M $POH = -\log[OH^{-1}]$
 $= -\log(0.50)$
 $= 0.30$

4.
$$H_{z}A + H_{z}O \Rightarrow HA^{-} + H_{3}O^{+}$$

1. 2.00M
C - 0.32M
E 1. b8M
() 0.32M
(

5.
$$[H_2 SO_4] = [H_3 O^4]$$

 $C_1 V_1 = C_2 V_2$
 $C_2 = \frac{(0.500)(15.0)}{(500)}$
 $= 0.15M = [H_3 O^4]i$
 $[OH^-]_F = [OH^-]i - [H_3 O^4]i$
 $= 0.525M = 0.15M$
 $= 0.525M - 0.15M$
 $= 0.375M$
 $POH = -log (0.375)$
 $= 0.426$
 $PH = 14-0.426$
 $= 13.574$

$$K_{b} = \frac{[H_{2}PO_{4}^{2}][OH^{2}]}{[HPO_{4}^{2}]} = \frac{x^{2}}{0.75 \cdot x} = 1.6 \times 10^{-7}$$

$$x = \int (0.75)(1.6 \times 10^{-7})$$

$$= 3.5 \times 10^{-4}M = COH^{-1}$$

$$POH = -log (3.5 \times 10^{-4})$$

$$= 3.4b$$