Chemistry 12
 Acid Base Part 1 Review Package

Name:
Date:
Block:

I. Multiple Choice:

1. In which of the following is $\mathrm{HSO}_{3}-$ acting as a $\mathrm{Br} \varnothing$ nsted-Lowry acid?
A. $\mathrm{HSO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{OH}^{-}$
B. $\mathrm{NH}_{3}+\mathrm{HSO}_{3} \leftrightharpoons \mathrm{NH}_{4}++\mathrm{SO}_{3}{ }^{2-}$
C. $\mathrm{HSO}_{3}-\mathrm{HPO}_{4}{ }^{2-} \leftrightharpoons \mathrm{H}_{2} \mathrm{SO}_{3}+\mathrm{PO}_{4}{ }^{3-}$
D. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+\mathrm{HSO}_{3}^{-} \leftrightharpoons \mathrm{HC}_{2} \mathrm{O}_{4}^{-}+\mathrm{H}_{2} \mathrm{SO}_{3}$
2. What is the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}-$?
A. $\mathrm{OH}-$
B. $\mathrm{PO}_{4}{ }^{3-}$
C. $\mathrm{HPO}_{4}{ }^{2-}$
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$
3. Which of the following describes the relationship between acid strength and K_{a} value for weak acids?

Acid Strength
A. decreases
B. decreases
C. increases
D. increases

Ka
increases
remains constant
increases
decreases
4. Which of the following is the strongest acid that can exist in an aqueous solution?
A. O^{2-}
B. $\mathrm{NH}_{2}-$
C. $\mathrm{H}_{3} \mathrm{O}^{+}$
D. HClO_{4}
5. What is the pH of a 0.050 M KOH solution?
A. 0.30
B. 1.30
C. 12.70
D. 13.70
6. What is the value of K_{b} for $\mathrm{H}_{2} \mathrm{PO}_{4}-$?
A. 1.3×10^{-12}
B. 6.2×10^{-8}
C. 1.6×10^{-7}
D. 7.5×10^{-3}
7. Which of the following is the net ionic equation for the neutralization of HNO_{3} (aq) with $\mathrm{Sr}(\mathrm{OH})_{\text {z(ag)? }}$?
A. $\mathrm{H}^{+}{ }_{\text {taq) }}+\mathrm{OH}^{-}{ }_{\text {(aqu) }} \leftrightharpoons \mathrm{H}_{2} \mathrm{OH}_{4}$
B. Sr^{2+} (aq) $+2 \mathrm{NO}_{3}{ }_{\text {fact }} \leftrightharpoons \mathrm{Sr}\left(\mathrm{NO}_{3}+2\right.$ (s)

D. $2 \mathrm{H}^{+}$(aq) $+2 \mathrm{NO}_{3}^{-}$(aq) $+\mathrm{Sr}^{2+}$ (aq) $+2 \mathrm{OH}_{\text {-(aq) }}^{-} \leftrightharpoons \mathrm{Sr}^{2+}$ (aq) $+2 \mathrm{NO}_{3}^{-}$-(an) $+2 \mathrm{H}_{2} \mathrm{O}_{\text {(}}$
8. Water will act as an acid with which of the following?
I. $\mathrm{H}_{2} \mathrm{CO}_{3}$
II. $\mathrm{HCO}_{3}{ }^{-}$
III. $\mathrm{CO}_{3}{ }^{2-}$
A. I only.
B. III only.
C. I and II only.
D. II and III only.
9. Which of the following 1.0M solutions will have the greatest electrical conductivity?
A. HI
B. $\mathrm{H}_{2} \mathrm{~S}$
C. HCN
D. $\mathrm{H}_{3} \mathrm{PO}_{4}$
10. An acid is added to water and a new equilibrium is established. The new equilibrium can be described by:
A. $\mathrm{pH}<\mathrm{pOH}$ and $\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$
B. $\mathrm{pH}<\mathrm{pOH}$ and $\mathrm{K}_{\mathrm{w}}<1.0 \times 10^{-14}$
C. $\mathrm{pH}>\mathrm{pOH}$ and $\mathrm{K}_{w}=1.0 \times 10^{-14}$
D. $\mathrm{pH}>\mathrm{pOH}$ and $\mathrm{Kw}_{\mathrm{w}}>1.0 \times 10^{-14}$
11. Consider the following equilibrium:

$$
2 \mathrm{H}_{2} \mathrm{O}_{(l)}+\text { energy } \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

The $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$will decrease and the K w will remain constant when
A. a strong acid is added.
C. the temperature is increased.
B. a strong base is added.
D. the temperature is decreased.
12) Which of the following graphs describes the relationship between $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH ?
A.

B.

C.

D.

13) When the $\left[\mathrm{H}_{3} \mathrm{O}+\right]$ in a solution is increased to twice the original concentration, the change in pH could be from
A. 1.7 to 1.4
B. 2.0 to 4.0
C. 5.0 to 2.5
D. 8.5 to 6.5
14. The relationship $\frac{\left[\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}{ }^{2-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}^{-}\right]}$is the
A. K_{a} for $\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}^{-}$
B. K_{b} for $\mathrm{H}_{3} \mathrm{P}_{2} \mathrm{O}_{7}^{-}$
C. K_{a} for $\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}{ }^{2-}$
D. K_{b} for $\mathrm{H}_{2} \mathrm{P}_{2} \mathrm{O}_{7}{ }^{2-}$
15. Which of the following describes the relationship between acid strength and Ka value for weak acids?
A.

Acid Strength	K_{a}
increases	increases
increases	decreases
decreases	increases
decreases	remains constant

16. The value of K_{b} for $\mathrm{HPO}_{4}{ }^{2-}$ is:
A. 2.2×10^{-13}
B. 6.2×10^{-8}
C. 1.6×10^{-7}
D. 4.5×10^{-2}
17. What volume of 0.100 M NaOH is required to completely neutralize 15.00 mL of 0.100 M $\mathrm{H}_{3} \mathrm{PO}_{4}$?
$\begin{array}{lll}\text { A. } 5.00 \mathrm{~mL} & \text { B. } 15.0 \mathrm{~mL} \text { C. } 30.0 \mathrm{~mL} & \text { D. } 45.0 \mathrm{~mL}\end{array}$
18. What is the pH of the solution formed when 0.060 moles NaOH is added to 1.00 L of 0.050 M HCl ?
A. 2.00
B. 7.00
C. 12.00
D. 12.78
19. The conjugate acid of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$ is:
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}^{-}$
B. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}{ }^{+}$
D. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$
20. Which of the following is a property of 1.0 M HCl but not a property of $1.0 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$?
A. turns litmus red
C. has a pH less than 7.0
B. ionizes completely
D. produces $\mathrm{H}_{3} \mathrm{O}^{+}$in solution
21. In a 1.0M HF solution, the concentration of $\mathrm{HF}^{-1} \mathrm{~F}^{-1}$ and OH^{-1}, from highest to lowest is:
A. $[\mathrm{HF}]>\left[\mathrm{F}^{-1}\right]>\left[\mathrm{OH}^{-}\right]$
B. $[\mathrm{F}]>[\mathrm{HF}]>\left[\mathrm{OH}^{-1}\right]$
C. $\left[\mathrm{OH}^{-1}\right]>[\mathrm{HF}]>\left[\mathrm{F}^{-1}\right]$
D. $\left[\mathrm{OH}^{-1}\right]>\left[\mathrm{F}^{-1}\right]>[\mathrm{HF}]$
22. In which of the following reactions is water behaving as a Brønsted-Lowry acid?
A. $2 \mathrm{H}_{2} \mathrm{O} \leftrightharpoons 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
B. $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
C. $\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{NH}_{4}+\mathrm{OH}^{-}$
D. $\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O} \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{NH}_{3}$
23. What is the $\left[\mathrm{OH}^{-}\right]$of a solution with $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=9.3 \times 10^{-2} \mathrm{M}$?
A. $9.3 \times 10^{-16} \mathrm{M}$
B. $8.6 \times 10^{-13} \mathrm{M}$
C. $1.1 \times 10^{-13} \mathrm{M}$
D. $9.3 \times 10^{-2} \mathrm{M}$
24. The pH of $0.10 \mathrm{M} \mathrm{HNO}_{3}$ is:
A. 0.79
B. 1.00
C. 1.26
D. 13.00
25. What is the pOH of a solution made by adding 50.0 mL of 0.50 M NaOH to 250.0 mL of water?
A. 0.30
B. 1.00
C. 1.08
D. 12.92
26. Which of the following 1.0 M solutions will have the lowest pH ?
A. HCl
B. HCN
C. $\mathrm{H}_{3} \mathrm{PO}_{4}$
D. $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
27. In an aqueous solution of NaCl , the pH is:
A. less than 7 and the solution is acidic.
B. equal to 7 and the solution is neutral.
C. greater than 7 and the solution is basic.
D. greater than 7 and the solution is acidic.
28. How many moles of KOH are necessary to completely neutralize 42.0 mL of 3.00 M HCl ?

A. 0.0630 moles	C. 0.252 moles
B. 0.126 moles	D. 3.00 moles

29. The solution with the lowest electrical conductivity is:
A. $0.10 \mathrm{M} \mathrm{H}_{2} \mathrm{~S}$
B. $0.10 \mathrm{M} \mathrm{HNO}_{2}$
C. $0.10 \mathrm{M} \mathrm{H} \mathrm{HO}_{3}$
D. 0.10 M NH 44
30. The solution with the lowest pH is:
A. 1. OM HF
C. 1.0 M HCOOH
B. 1.0 M HCN
D. 1. $0 \mathrm{M} \mathrm{CH} 3 \mathrm{COOH}^{2}$
31. As the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in a solution decreases, the $[\mathrm{OH}-]$:
A. increases and the pH increases.
B. increases and the pH decreases.
C. decreases and the pH increases.
D. decreases and the pH decreases.
32. The value of PKw at $25^{\circ} \mathrm{C}$ is;
A. 1.0×10^{-14}
B. 1.0×10^{-7}
C. 7.00
D. 14.00
33. Consider the following equilibrium:

$$
2 \mathrm{H}_{2} \mathrm{O}+\text { energy } \leftrightharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
$$

In pure water at a temperature of $50^{\circ} \mathrm{C}$,
A. $\mathrm{pH}<7$
B. $\mathrm{pH}+\mathrm{pOH}=14$
C. $K W=1.0 \times 10^{-14}$
D. $[\mathrm{OH}-]<1.0 \times 10^{-7}$
34. What is the pOH of 2.5 M NaOH ?
A. -0.40
B. 0.0032
C. 0.40
D. 13.60
35. A 0.010 M acid solution has a pH of 2.00. The acid could be
A. HNO_{3}
B. $\mathrm{H}_{2} \mathrm{SO}_{3}$
C. HCOOH
D. $\mathrm{CH}_{3} \mathrm{COOH}$
36. Consider the following:
I. $\mathrm{PO}_{4}{ }^{3-}$
II. $\mathrm{HPO}_{4}{ }^{2-}$
III. $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$
IV. $\mathrm{H}_{3} \mathrm{PO}_{4}$

The term amphiprotic can be used to describe:
A. I only.
B. II and III only.
C. I, II and III only.
D. II, III and IV only.
37. Calculate the $\left[\mathrm{H}_{3} \mathrm{O}+\right.$] in a solution prepared by mixing 25.0 mL of 1.0 M HCl with 50.0 mL of 0.50 M KOH .
A. 1.0 M
B. 0.50 M
C. 0.25 M
D. $1.0 \times 10^{-7} \mathrm{M}$

II. Short Answers:

1) Calculate the pH of $0.50 \mathrm{M} \mathrm{H}_{3} \mathrm{BO}_{3}$.
2) Calculate the pH of $1.50 \mathrm{M} \mathrm{NH}_{3}$.
3) Calculate the pOH of $0.25 \mathrm{M} \mathrm{Sr}(\mathrm{OH})_{2}$.
4) A 2.00 M diprotic acid has a pH of 0.50 . Calculate its Ka value.
5) Calculate the pH of a solution prepared by adding 15.0 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ to 35.0 mL of 0.750M NaOH.
6) Determine the pH of a 0.75 M solution of $\mathrm{HPO}_{4}{ }^{2-}$.
