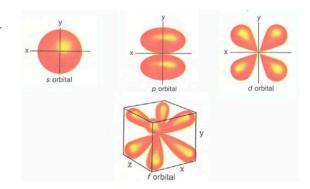
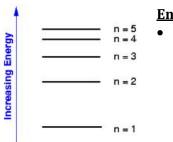
Chemistry 11 **Atomic Theory II**


Name: Date: Block:


- 1. Electronic Structure
- 2. Electron Configuration
- 3. Orbital Diagrams

Electronic Structure

Video: The Uncertain Location of Electrons https://www.youtube.com/watch?v=8ROHpZ0A70I

- Electrons are found in orbitals (________) around the nucleus
- There are 4 different types of orbitals:
- Each type of orbital has a different _____
- The orbital that an electron occupies depends on its energy level (called n)

Energy level

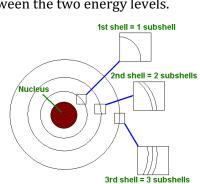
•

Bohr's experiments with hydrogen atoms were fundamental to figuring out the electronic structure of the atom:

Bohr's Postulate #1:

- The hydrogen atom had only certain allowed ______ or stationary states.
- The lowest (smallest) orbit was called the "______" and designated n = 1.
- The larger orbits were called " $\underline{}$ " and designated as n = 2, n = 3, n = 4, etc.

Bohr's Postulate #2:

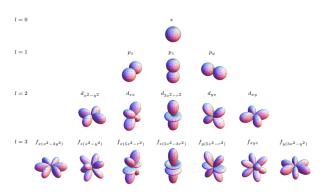

 As long as the electron moved within the same energy level, the electron did not radiate or absorb energy

Bohr's Postulate #3:

• The electron could only move from one allowed energy level to another if it ______ or ____ an amount of energy equal to the energy different between the two energy levels.

Expanding Bohr's Theory

- Each energy level (called shells) is split up into subshells and orbitals.
 - o A shell matches the energy level of the electron
 - o Each subshell contains a ______ (s, p, d, f)
 - o An orbital is the region of space occupied by an electron



Atomic Orbitals

- There is _____ s orbital
- There are _____ p orbitals
- There are _____ d orbitals
- There are _____ f orbitals

Electrons fill orbitals from the lowest energy to the highest

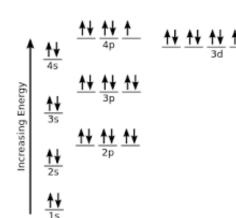
• 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p

Electron Configuration

- Shows where the electrons are located within the orbitals
- There are three "rules" that we must remember:

Rule #1: Aufbau Principle

- Aufbau means "building up" in German


Rule #2: Pauli Exclusion Principle

• Each orbital can hold a maximum of

Rule #3: Hund's Rule

• When orbitals of equal energy are being filled, electrons are most stable when _____

Let's practice!

- 1. Lithium 3 electrons
- 2. Beryllium 4 electrons

4.	Carbon
5.	Nitrogen
6.	Oxygen
7.	Fluorine
8.	Neon
More 1.	Practice: F
2.	Ca
3.	Cu
4.	Kr
	Kr Mo

3. Boron

_	
7	V۵
/ .	ΛC

8. I-

9. How are Ba²⁺, Xe, and I-related?

Orbital	Diagrams
Orbitai	Diagrams

B
$$1s^22s^22p^1$$
 $1s$ $2s$ $2p$

Element	Electron Configuration	Orbital Diagram
Li		
S		
Ne		
V		

Chemistry 11

Electron Configuration Worksheet

Name: Date: Block:

What is the electron configuration for the following?

1.	Sc	
5.		
	K	
	Pd	
9.		
10		

Which element is represented by the following?

- $11.\,1s^22s^22p^63s^23p^3$
- $12.\ 1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^{10}6p^67s^25f^{14}6d^{10}7p^2$
- $13.\,1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}5p^66s^24f^{14}5d^6$
- $14.1s^22s^1$
- $15.\,1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^1$
- $16.\,1s^22s^22p^63s^23p^64s^23d^{10}4p^65s^24d^{10}$
- $17.\,1s^22s^22p^63s^23p^2$
- $18.\ 1s^22s^22p^63s^23p^64s^23d^{10}4p^5$
- $19.\,1s^22s^22p^6$
- $20.\,1s^22s^22p^63s^23p^64s^23d^2$

In the space below, write the electron configurations and orbital diagrams of the following elements/ions.

Element	Electron Configuration	Orbital Diagram
Na+		
Fe ²⁺		
Ar		
Br-		
Mg		
Со		

Determine which of the following electron configurations are not valid? Explain:

- 11) $1s^22s^22p^63s^23p^64s^24d^{10}4p^5$ _____
- 12) 1s²2s²2p⁶3s³3d⁵ _____