Chemistry 11
Atomic Theory IV

Name:
Date:
Block:

1. Lewis Diagrams
2. VSEPR

Lewis Diagrams

- Lewis diagrams show the bonding between atoms of a molecule.
- Only the outermost electrons of an atom (called valence electrons) are involved in bonding (usually just P and 5)

Fill in the chart below to determine the valence electrons of elements 3-10

In general: $n=$ energy level

When drawing Lewis dot structures:

- Draw 1 dot for each valence electron
- Begin pairing dots only after you have put a dot on each side (north, east, south, west) of the atom

Draw the Lewis structures for the elements belonging to period 4 of the periodic table:

Draw the Lewis structures for the following atoms and ions:

Draw the Lewis structures for the ions of these elements：

Ca	Se	－Ga	As	Cl
$[C a]^{2+}$	$\left[: S_{0}^{\bullet} e:\right]^{2-}$	$\left[(a]^{3+}\right.$	$[\because ⿴ 囗 ⿰ 丿 ⿺ 丄 𠃍 \bullet \bullet]^{3-}$	$[\overbrace{\bullet}^{\bullet} ⿻^{\bullet}]^{\bullet}$

Lewis Structures for Molecules：

What to Think About	How to Do It
1．Figure out the total number of valence electrons in the molecule	$\begin{aligned} & N: 5 \\ & C 1: 7 \times 3=21 \quad 21+5= \end{aligned}$
2．Arrange the atoms．Assume that hydrogen and the halogens will not be the central atom	$C l \quad N \quad C l$ Cl
3．Draw valence electrons around each atom	$\begin{aligned} & \ddot{C l} \cdot \ddot{N} \cdot \ddot{C l}^{\prime}: \\ & : C_{l}: \end{aligned}$
4．Connect unpaired electrons with a bond． Remember：there are two electrons in every bond．Some molecules may need double bonds． －H atoms form only one bond －O normally forms two bonds －N normally forms three bonds －C normally forms four bonds －Halogens normally form only one bond	
5．Redraw the diagram from step 4 neatly．	
6．Do almal check： Do all the valence electrons in the diagram（bonds AND dots）match the total number of valence electrons from step 1 ？ Do all atoms follow the octet rule（8 electrons in the valence shell）？	

Exceptions to the OCTET RULE:

1. The incomplete octet

- Elements in groups \square 2 and \qquad tend to form compounds in which they are surrounded by fewer than eight electrons
- Examples:

$$
H=O_{0}^{\mathrm{H}_{2} \mathrm{O}}-H
$$

$$
H-O-H
$$

BF_{3}

$\therefore \ddot{F}-B-\ddot{F}:$
2. The expanded octet

- Atoms in period 3 or higher sometimes form compounds in which more than eight electrons surround the central atom.
- Example: SF_{6}

3. Odd-electron molecules

- Some molecules contain an odd number of electrons.
- Odd-electron molecules are called radicals
- Example: NO_{2}

$$
\because \dot{O}=\dot{N}
$$

With the above steps, construct Lewis structures for the following:

1. CO_{2}	2. SO_{2}
3. $\mathrm{CH}_{2} \mathrm{O}$ (*hint: Carbon is the central atom)	4. $\mathrm{CO}_{3}{ }^{2-}$ (*hint: 2-adds 2 electrons to the total number of valence electrons)
5. CN-(*hint: - adds 1 electron to the total number of valence electrons) $\frac{[: C \equiv: N:]^{-}}{[: C \equiv N:]^{-}}$	6. SCO (*hint: C is the central atom) $\ddot{s}=c=\ddot{0}$

More Practice!!

1. PCl_{3}

VSEPR (Valence Shell Electron Pair Repulsion)
In order to understand the shapes the molecules form we must adhere to the same rules we have been following throughout this section
i. Electrons all have the same negative charge
ii. Like charges repel
iii. Bonded pairs surrounding the nucleus repel other bonded pairs and other electrons
iv. Lone pairs surrounding the nucleus repel other bonded pairs and other electrons
v. Valence electrons are oriented in such a way as to be as far from each other as possible
A = Central atom

$$
\begin{aligned}
& \text { Ligands } \\
& (\text { atoms bonded to } A)
\end{aligned}
$$

Two-Bonding Electron Groups: AX $_{2}$

Notation \& Shape Name	Molecular Shape	Sample Lewis Structure
		Carbon dioxide

Three-Electron Groups: $\mathbf{A X}_{3}$ and $\mathbf{A X}_{2} \underline{\underline{E}}$

Notation \& Shape Name	Molecular Shape	Sample Lewis Structure
$A X_{3}$	$\begin{aligned} & x=A-x \\ & x=\text { trigonal planar } \end{aligned}$	 bomen trifluoride
$A X_{2} E$		$\because=\ddot{S}=\because$ Sulfur dioxide

Four-Electron Groups: $\mathbf{A X}_{4}, \mathrm{AX}_{3} \mathbf{E}^{\mathrm{E}}$ and $\mathrm{AX}_{2} \underline{\underline{E}}_{2}$

Notation \& Shape Name	Molecular Shape	Sample Lewis Structure	
θX_{4}	$x \\|, \overbrace{x}^{x}-x$	 methane	

Five-Electron Groups: $\mathbf{A X}_{5}, \mathbf{A X}_{4} \underline{E}^{\mathbf{E}}, \mathbf{A X}_{3} \underline{\underline{E}}_{2}, \mathbf{A X}_{2} \underline{\underline{E}}_{3}$

Six-Electron Groups: $\mathbf{A X}_{6}, \mathbf{A X}_{5}{\underline{\underline{E}}, \mathbf{A X}_{4}}^{\underline{\mathbf{E}_{2}}}$

