Chemistry 11 Atomic Theory IV

Name: Date: Block:

- 1. Lewis Diagrams
- 2. VSEPR

Lewis Diagrams

- Lewis diagrams show the bonding between atoms of a molecule.
- Only the outermost electrons of an atom (called <u>Valence</u> electrons) are involved in bonding (usually just <u>P</u> and <u>S</u>)

Fill in the chart below to determine the valence electrons of elements 3-10

Element	Lithium	Beryllium	Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon	
Group #	t	2	3	14	15	16	רו	18	
Full Electron Configuration	15225'	15 ² 25 ²	152252p	15222 1522 15°	15 23 2p	s <u>2s</u> 2p	S ² 25 ² 29	s <u>2</u> s22	pb
# of Valence Electrons		2	M	4	5	6	7	8	

Ingeneral: N=energy level

Main Group Number	1	2	13	14	15	16	17	18
Valence Electrons	l	2	3	Ц	5	6	7	8
Valence Electron Configuration	<u>v 2,</u>	NSZ	nsnp	nsnp	nsnp3	ns ² np ⁴	U2 U2	ns ² np

When drawing Lewis dot structures:

- Draw 1 dot for each valence electron
- Begin pairing dots only after you have put a dot on each side (north, east, south, west) of the atom

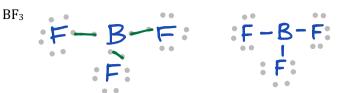
Draw the Lewis structures for the elements belonging to period 4 of the periodic table:

Group 1	Group 2	Group 13	Group 14	Group 15	Group 16	Group 17	Group 18
K	Ca.	Ga.	Ge.	· As	·Se:	·Br:	·Kr:

Draw the Lewis structures for the following atoms and ions:

	oupz ,J				
Ba	Br 🖌	Br-	Bi	Al ³⁺	Те
Ba.	· Br:	[:Br:]	· BĀ ·	[AI] ³⁺	·Te:

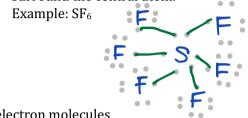
Draw the Lewis str	Draw the Lewis structures for the ions of these elements:							
Ca	Se Se	Ga	As	Cl				
$\begin{bmatrix} Ca \end{bmatrix}^{2+}$	[:Se:] ²⁻	[Ga] ³⁺	[.As.]	[:ci:]				

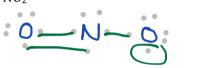

Lewis Structures for Molecules:

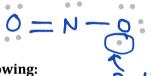
Fxam		
	ple: NCl ₃	
What to Think About	How to Do It	
1. Figure out the total number of valence	N:5	
electrons in the molecule		6
	C1:7x3=21	
2. Arrange the atoms. Assume that hydrogen and		
the halogens will not be the central atom		
	CI	
3. Draw valence electrons around each atom		
4. Connect unpaired electrons with a bond. Remember: there are two electrons in every		
bond. Some molecules may need double bonds.	C = N - C	
- H atoms form only one bond		
- O normally forms two bonds		
- N normally forms three bonds - C normally forms four bonds		
- Halogens normally form only one bond	• •	
5. Redraw the diagram from step 4 neatly.		
	CI - N - C(
	:CI:	
	• •	
6. Do a final check:		
Do all the valence electrons in the		
diagram (bonds AND dots) match the		
total number of valence electrons from		
step 1? Do all atoms follow the octet rule (8		
electrons in the valence shell)?		

Exceptions to the OCTET RULE:

- 1. The incomplete octet
 - Elements in groups 1, 2 and 3 tend to form compounds in which they are • surrounded by fewer than eight electrons
 - Examples:

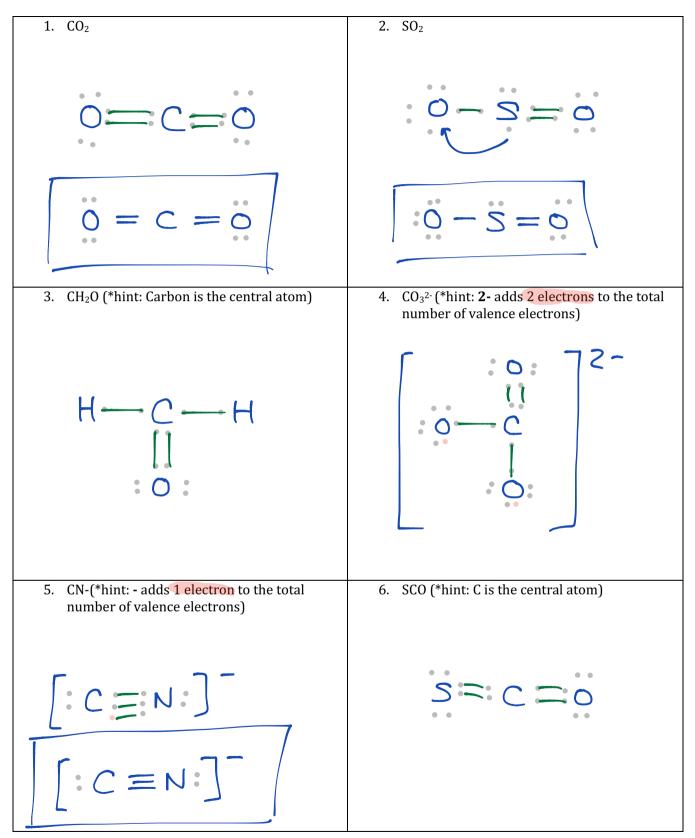

 H_2O

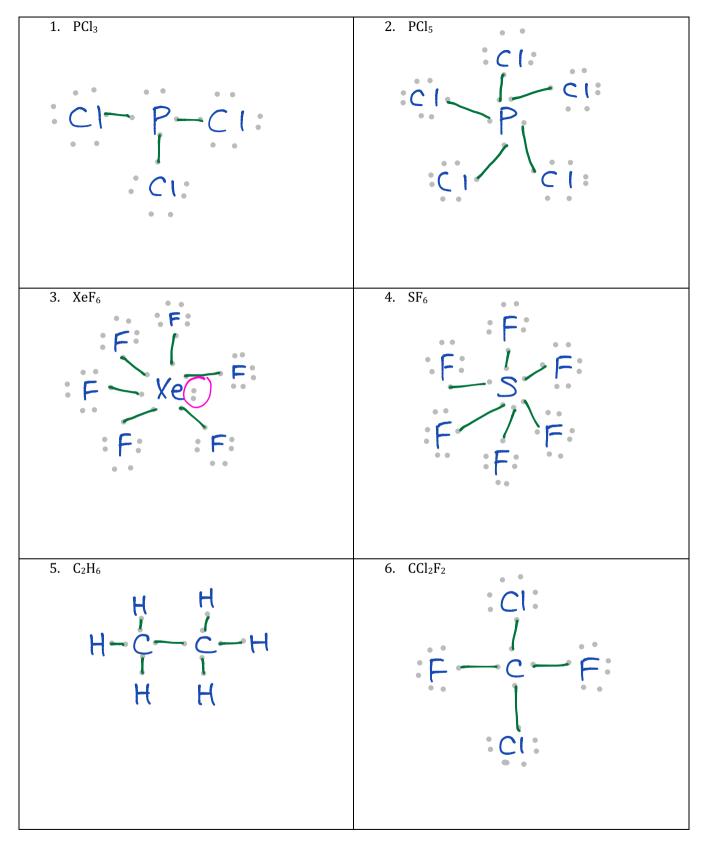

2. The expanded octet


•

Atoms in period 3 or higher sometimes form compounds in which more than eight electrons • surround the central atom.

- 3. Odd-electron molecules
 - Some molecules contain an odd number of electrons.
 - Odd-electron molecules are called radicals •
 - Example: NO₂




With the above steps, construct Lewis structures for the following:

adical 1. CCl₄ 2. NF₃ ${}^{4} \qquad C \\ I \\ C \\ - C \\ I \\ - C \\ - C \\ I$ F N-F • (]: 3. H₂O 4. H₂Se H-Se-H н- 0 - н 5. NH₃ 6. OF₂ F ---- F -N-H !

Lewis Structures for Molecules with Multiple Bonds:

More Practice!!

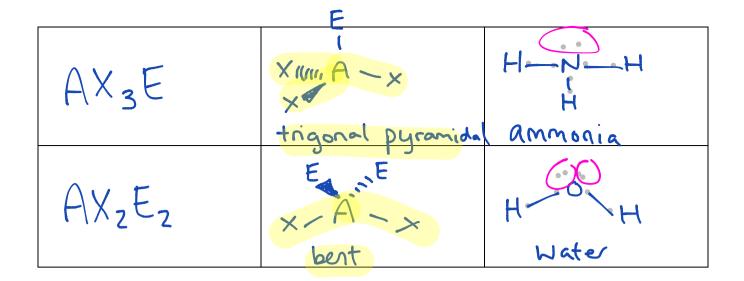
VSEPR (Valence Shell Electron Pair Repulsion)

In order to understand the shapes the molecules form we must adhere to the same rules we have been following throughout this section

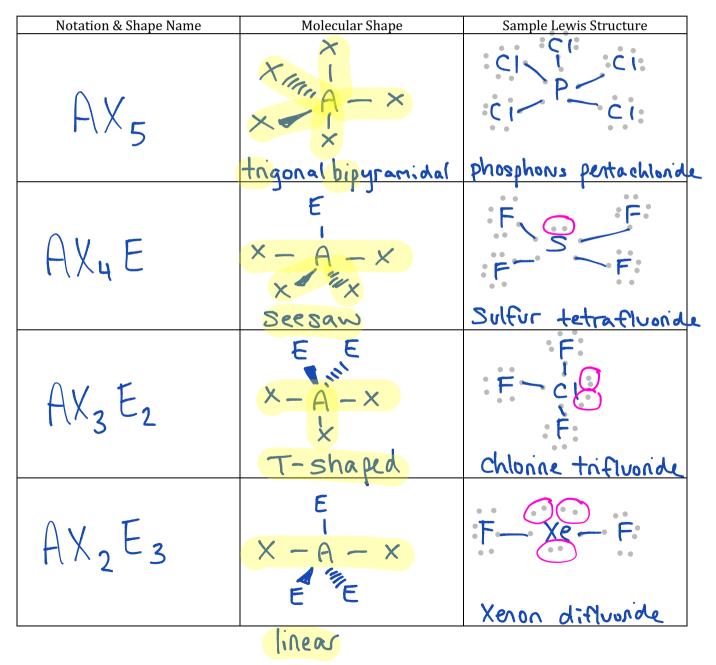
- i. Electrons all have the same negative charge
- ii. Like charges repel
- iii. Bonded pairs surrounding the nucleus repel other bonded pairs and other electrons
- iv. Lone pairs surrounding the nucleus repel other bonded pairs and other electrons
- v. Valence electrons are oriented in such a way as to be as far from each other as possible

Ligands x = (atoms bonded to A) E - electron pair A = Central atom

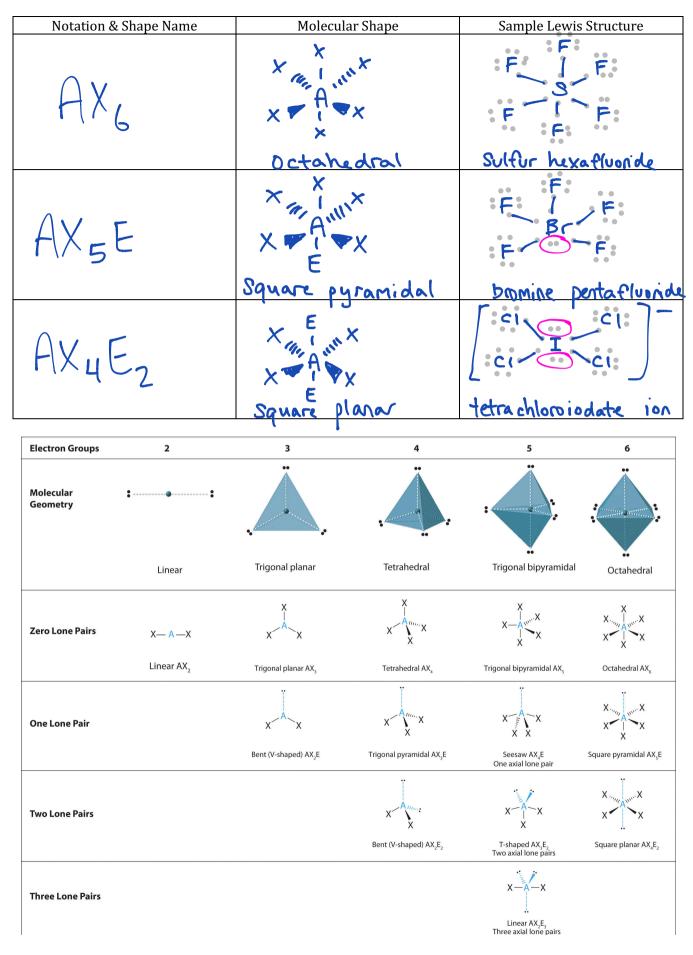
Two-Bonding Electron Groups: AX₂


Notation & Shape Name	Molecular Shape	Sample Lewis Structure	
AX2	$\times - A - X$ linear	O=C=O Carbon dioxide	

<u>Three-Electron Groups: AX₃ and AX₂E</u>


Notation & Shape Name	Molecular Shape	Sample Lewis Structure
AX3	+ IIIIA - X trigonal planar	F-B-F boron trifluonide
AXZE	E X-A-X best	0=5=0 Sulfur dioxide

Four-Electron Groups: AX4, AX3E and AX2E2


Notation & Shape Name	Mo <mark>lecul</mark> ar Shape	Sample Lewis Structure
AX4	XIIIII, A-X	エーレーエー
	tetrohedral	Methane
	Tellanearar	

Five-Electron Groups: AX₅, AX₄E, AX₃E₂, AX₂E₃

Six-Electron Groups: AX₆, AX₅E, AX₄E₂

