Chemistry 11
 Atomic Theory Review

1. Give the atomic number and the number of protons, neutrons and electrons in the following:

Ion	Atomic \#	Atomic Mass	Protons	Neutrons	Electrons	
Hf^{3+}	7	178	70	6		
Po^{2+}	845	8	8	8	8	
At^{-}	85	209	8	8	8	8

2. Give the nuclear symbol of the following isotopes:

Nuclear Symbol		Protons	Neutrons
96 42 40^{3+}	42	54	Electrons
74 32 26	32	42	39
$108 \mathrm{Hs}^{3+}$	108	157	105

3. What is the average atomic mass of element X given the following proportions?
${ }^{192} \mathrm{X}=35.5 \%,{ }^{194} \mathrm{X}=34.9 \%,{ }^{198} \mathrm{X}=20.3 \%,{ }^{209} \mathrm{X}=9.3 \%$
$(0.355 \times 192 \mathrm{amv})+$
$(0.349 \times 194 \mathrm{anv})+$
$(0.203 \times 198 \mathrm{amu})+$
$(0.093 \times 209 \mathrm{amv})=$

4. Each single orbital can hold a maximum of 2 electrons.
5. An " s " subshell (1 orbital) can hold a maximum of _ 2
\qquad electrons A "p" subshell (3 orbitals) can hold a maximum of \qquad electrons
A "d" subshell (5 orbitals) can hold a maximum of 10 electrons An " f " subshell (7 orbitals) can hold a maximum of 4 electrons
When electrons in an atom are filling energy levels, they fill the loweSt possible energy levels first.
6. Give the electron configuration and orbital diagram for each of the following atoms and ions:

7. Write the configuration and then find the number of valence electrons for the following atoms:

N (configuration) \qquad (\# of valence ers) 5
Si (configuration) [Ne] $3 s^{2} 3 p^{2}(\#$ of valence ers) 4
Ca (configuration) $[\mathrm{Ar}] 4 \mathrm{~s}^{2}$ (\# of valence ers) 2
P (configuration) [Ne$] 3 s^{2} 3 p^{3} \quad$ (\# of valence e- ss) 5
Al (configuration) [Ne$] 3 s^{2} 3 p^{\prime}$ (\# of valence ers) 3
8. In order to become stable,
an atom of Ca will _give_ _ $2_{_}$electrons and become the ion __Care
an atom of Se will take 2 electrons and become the ion Se^{2-}
an atom of K will give 1 electrons and become the ion K^{+}
an atom of Br will take 1 electrons and become the ion $\underline{\mathrm{Br}^{-}}$
an atom of N will take 3 electrons and become the ion N^{3-}
an atom of As will take 3 electrons and become the ion As $^{3-}$
an atom of Al will give 3 electrons and become the ion Al^{3+}
an atom of Te will take $\underline{2}$ electrons and become the ion Te^{2-}
9. What is the general trend in atomic radius (size of atoms) as you move from left to right across any period? (increase decrease) \qquad decrease
10. As you move from Li to Ne , electrons are filling the same different) the same energy levels(s).
11. As you move across from Li to Ne , what is happening to the number of protons in the nucleus?
increase What do the protons do to the electrons? \qquad .
Suggest a reason why the atoms in a period actually get smaller as you move from left to right.
The more pottos, the more positive pull the nucleus has, the more tightly the electron shells are being held to the nucleus.
12. What is the general trend in atomic radius (size of atoms) as you move down a vertical column (group)? (increase/decrease) \qquad
13. Suggest a reason for this trend.

More electron shells are being added.
14. What is meant by ionization energy?

The energy required to remove an electron from a neutral atom.

15. What is the general trend in first ionization energy as you move from left to right across any Period? (eg. from $\mathrm{Li} \rightarrow \mathrm{Ne}$ or from $\mathrm{Na} \rightarrow \mathrm{Ar}$) (4 increase /decrease) indre ace
16. Keeping in mind the trend in atomic radius as you move from left to right across a period, suggest a reason for this trend in ionization energies.
The electrons are held tighter in smaller atoms, making
it more difficult (requiring more energy) to remove an
electron.
17. What is the trend in ionization energy as you move down a vertical column, like from $\mathrm{Li} \rightarrow \mathrm{Na} \rightarrow \mathrm{K}$ or from $\mathrm{He} \rightarrow \mathrm{Ne} \rightarrow \mathrm{Ar} \rightarrow \mathrm{Kr}$? (increase/decreased_decrease
18. Suggest a reason for this trend based on atomic radius (size) and the distance and force of attraction between the nucleus and the outer electron.
It is easier to remove an electron from a lager atom because the electrons aren't held as tightly due to the shielding effect.
19. Compare the following particles:

Sodium Ion	Oxygen Ion	Neon	Magnesium Atom	Fluorine Ion

Arrange the particles using chemical formulas from smallest atomic radii to largest atomic radii:

Smallest

Largest

$$
\mathrm{Na}^{+}<\mathrm{Ne}<\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{Mg}
$$

20. Determine the type of bond that forms between the following atoms:
a) N and 0 3.5-3.0 $=0.5$ polar covalent
b) Ca and P 2.1-1.0 = 1.1 polar covalent
c) K and $B r 2.8-0.8=2.0$ ionic
d) Sand H 2.5-2.1=0.4 polar covalent
e) Cu and F 4.0-1.9 $=2.1$ ionic
f) Cl and $\mathrm{Cl} 3.0-3.0=0 \quad$ nonpolar covalent
21. Fill in the table below.

Compound	Lewis Structure	AXE Notation	Shape
$\mathrm{NO}_{3}{ }^{-}$		A_{3}	Name: Trigonal planar Diagram:
SF_{4}		$A x_{4} E$	Name: Seesaw Diagram:
$\mathrm{PO}_{4}{ }^{3-}$		$A X_{4}$	Name: tetrahedral Diagram:
BrF_{5}		$A X_{5} E$	Name: Square pyramidal Diagram:

$\mathrm{ClO}_{2}{ }^{-}$	$\left[\begin{array}{ll} 0 & C 1 \\ 0 & 0 \end{array}\right]^{-}$	$A X_{2} E_{2}$	Name: Bert Diagram:
NCl_{3}		$A X_{3} E$	Name: \qquad Diagram:
$\mathrm{H}_{2} \mathrm{O}$		$A X_{2} E_{2}$	Name: bent Diagram:
COCl_{2} (C is central atom)		$f X_{3}$	Name: trigonal planar Diagram:

