Chemistry 12 Name: Electrochemistry I - IV Worksheet

1. Calculate the oxidation number of the bolded and underlined element:

$\mathrm{H}_{\mathbf{C l O}}^{3}$	$\underline{\mathbf{N}}_{2} \mathrm{H}_{5}{ }^{+}$	$\underline{\mathbf{S}}$
8		
$\underline{\mathbf{C r}}(\mathrm{OH})_{4}{ }^{-}$	$\underline{\mathbf{S}}_{2} \mathrm{O}_{5}$	$\mathrm{HPO}_{3}{ }^{2-}$
$\underline{\mathrm{BrO}}_{3}{ }^{-}$	$\mathrm{K}_{2} \underline{\mathbf{U}}_{4}$	
		$\mathbf{C}_{3} \mathrm{H}_{8}$

2. Balance the following reactions. Double check your work by calculating oxidation numbers. Identify the reducing agent and oxidizing agent in each:
a) $\mathrm{U}^{4+}+\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}+\mathrm{UO}_{2}{ }^{2+}$
b) $\mathrm{Cl}_{2}+\mathrm{SO}_{2} \rightarrow \mathrm{Cl}^{-}+\mathrm{SO}_{4}{ }^{2-}$ (basic)
c) $\mathrm{S}^{2-}+\mathrm{ClO}_{3}^{-} \rightarrow \mathrm{Cl}^{-}+\mathrm{S}$
d) $\mathrm{HNO}_{2} \rightarrow \mathrm{HNO}_{3}+\mathrm{NO}$ (basic)
e) $\mathrm{FeHPO}_{3}+\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} \rightarrow \mathrm{Cr}^{3+}+\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Fe}^{3+}$
f) $\mathrm{Sb}_{2} \mathrm{~S}_{3}+\mathrm{NO}_{3}{ }^{-} \rightarrow \mathrm{NO}_{2}+\mathrm{SO}_{4}{ }^{2-}+\mathrm{Sb}_{2} \mathrm{O}_{5}$ (basic)
3. Classify the following combinations as spontaneous, non-spontaneous, or no reaction. If spontaneous or non-spontaneous, write out the complete reaction and calculate the cell potential.
a) Ni^{2+} and Ag
b) Sn^{4+} and Al
c) Al^{3+} and Ni^{2+}
d) Mn and Pb
e) Cr^{2+} and Fe
f) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)$ and Ag^{+}
g) $\mathrm{I}^{-}, \mathrm{Pb}$, and Sn^{2+}
4. An electrochemical cell is constructed using $\mathrm{Ag} / \mathrm{Ag}^{+}$and $\mathrm{Cu} / \mathrm{Cu}^{+2}$ half cells.
a) Draw the electrochemical cell.
b) Which electrode will lose mass?
c) Which electrode will gain mass?
d) If 0.875 g of metallic copper is lost, then calculate the number of moles of silver formed.
5. For the following, create an SRP table with the given information:
a) You have been given the following three half-reactions:
$\mathrm{A}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{A}$
$\mathrm{B}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{B}$
$\mathrm{C}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{C}$

- A^{2+} reacts with C but not with B .
b) You have been given the following four half-reactions:

$$
\begin{aligned}
& \mathrm{D}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{D} \\
& \mathrm{E}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{E} \\
& \mathrm{~F}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{F} \\
& \mathrm{G}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{G}
\end{aligned}
$$

- F^{2+} reacts with D, E and G.
- No reaction occurs between D^{2+} and any of the metals.
- G^{2+} only reacts with D .
c) You have been given the following five half-reactions:

$$
\begin{gathered}
\mathrm{H}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{H} \\
\mathrm{I}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{I} \\
\mathrm{~J}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{J} \\
\mathrm{~K}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{K} \\
\mathrm{~L}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{L}
\end{gathered}
$$

- K^{2+} only reacted with I and H .
- L^{2+} did not react with J.
- I^{2+} reacted with H .

6. Consider the following:

- A reacts with $\mathbf{B N O}_{3(\mathrm{aq})}$ and $\mathbf{H C l}_{(\mathrm{aq})}$.
- A does not react with $\mathbf{C}\left(\mathrm{NO}_{3}\right)_{2(a q)}$.
- C reacts with $\mathbf{H C l}_{(\mathrm{aq})}, \mathbf{B N O}_{3(\mathrm{aq})}, \mathbf{A}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}$ and $\mathbf{D}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}$.
- D reacts with $\mathbf{B N O}_{3(\mathrm{aq)}}$ but not with $\mathbf{H C l}_{(\mathrm{aq)}}$.
- $\quad \mathbf{C l} \cdot$ and $\mathrm{NO}_{3}-$ are considered to be spectator ions.

If $\mathbf{A}, \mathbf{B}, \mathbf{C}$, and \mathbf{D} are four metals, list the five reduction half-reactions in order of decreasing reduction potential. (watch the ion charges)

