Chemistry 12 Electrochemistry I

Name: Date: Block:

- 1. Oxidation Numbers
- 2. Electron gain and loss
- 3. Agents

Electrochemistry is the study of the interchange of chemical and electrical energy.

- Reactions with electron transfers are commonly called **oxidation-reduction reactions (redox reactions)**
- Not all reactions involve an electron transfer!

Oxidation Numbers

Oxidation number is the real or apparent charge of an atom or ion. Also called "combining capacity".

<u>Rules for Assigning Oxidation Numbers (simplified):</u>

1.

- 2.
- 3.
- 4.
- 5.
- 6.

7.

<u>Hint!!</u>

It might be helpful to break up a compound in a dissociation equation first!

Ex: KMnO₄ →

Ex: Na₂Mo₂O₅ \rightarrow

Example: Assign the oxidation number of each atom in the following species a) H_2O b) AsO_4 ³⁻

c) Pb(NO₃)₂

d) C₄H₁₀

e) Al₂(SO₄)₃

f) CO₃²⁻

g) NH₄+

h) Na₂Cr₂O₇

MORE PRACTICE!

Determine the oxidation number for **each atom** in the following compounds:

F ₂	Fe ₂ O ₃	CaCO ₃	BrO ₂ -
_			
PbI ₂	H ₂	S ₂ O ₃ ²⁻	CN-
ZnO	NH₄OH	P ₄	Cs ₂ O ₂
	N. H	M	
S ₂ O ₈ ²⁻	N2H4	MnO ₄ -	PO ₃ 3-
N2O5	WBr ₄	K ₂ S	SeO ₃ ²⁻
SF ₆	NO ₂	MnO ₂ -	Na ₂ Mo ₂ O ₅
NaNO ₃	H ₂ CO	OH -	Cl ₂ O
	D. V.O.	DCI	D O
03	Ba ₂ XeO ₄	PCI ₃	P_2O_5
U_3O_8	Pb	ZnBr ₂	S ₂ O ₃ ² -
(NH ₄) ₂ SeO ₄	CH3OH	LiAlH ₄	CH ₃ COO -
FeCl ₃	(NH ₄) ₂ C ₂ O ₄	BF ₃	SiO ₄ 4-

<u>Hebden Workbook Pg. 194 #3, 4</u>

Electron gain and loss

Loss	Gain	
Oxidation number increases	Oxidation number decreases	
Called "oxidation"	Called "reduction"	
L	G	
Ε	Ε	
0	R	
0	R	
Ι	I	
L	G	

Fe (s) + Cu ²⁺ (aq) \rightarrow Fe ²⁺ (aq) + Cu(s)

Practice:

Consider the following reaction:

$$2 \text{ Al} + \text{Fe}_2\text{O}_3 \rightarrow \text{Al}_2\text{O}_3 + 2 \text{ Fe}$$

Determine the oxidation numbers for each atom and write the value on top of the element in the reaction.

- 1. Are electrons gained or lost by each iron (III) ion?
 - a. How many? _____
- 2. Are electrons gained or lost by each Al atom?
 - a. How many? _____
- 3. How many electrons were transferred in total during the reaction?
- 4. What happened to the oxide ion, O^{2-} during the reaction?

The number of electrons ______ by the species being oxidized must always equal the number of electrons ______ by the species being reduced.

Practice:

1. Consider the following reactions. For each reaction:

- a) Determine the **oxidation number** for each of the atoms.
- b) Identify if the reaction is a **redox** reaction. (**red**uction/**ox**idation)

$(1) C + O_2 \rightarrow CO_2$	(6) $NH_3 + HCl \rightarrow NH_4Cl$
(2) $2CrO_4^{2-} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$	(7) $CaCO_3 + 2HCl \rightarrow CaCl_2 + CO_2 + H_2O$
(3) $\operatorname{ZnCl}_2 \rightarrow \operatorname{Zn}^{+2} + 2\operatorname{Cl}^{-1}$	(8) 3 I ₂ + 3 H ₂ 0 → 6 H ⁺ + 5 I- + IO ₃ -
(4) 2 NaI + Pb(NO ₃) ₂ \rightarrow PbI ₂ + 2 NaNO ₃	(9) $Zn + Br_2 \rightarrow ZnBr_2$

(5) $Cu + Ni^{2+} \rightarrow Cu^{2+} + Ni$ (10) $H_2CO_3 \rightarrow H_2O + CO_2$

2. When $MnO_{4^{2-}}$ undergoes **oxidation**, it may form:

A. MnO B. MnO₃ C. MnO₄- D. Mn₂O₃

3. During the reaction, electrons transfer from:

 MnO_4^- + 5 Fe²⁺ + 8 H⁺ \rightarrow Mn^{2+} + 5 Fe³⁺ + 4 H₂O

A. Fe^{3+} to Fe^{2+} B. Fe^{2+} to MnO_{4^-} C. MnO_{4^-} to Fe^{2+} D. MnO_{4^-} to Mn^{2+}

Agents

Another way of looking at it is that one species *causes* the electron loss or gain. A species that is being oxidized causes the other species to gain electrons and be reduced.

 MnO_{4} + 5 Fe²⁺ + 8 H⁺ \rightarrow Mn^{2+} + 5 Fe³⁺ + 4 H₂O

A substance that is reduced acts as an _____ agent. A substance that is oxidized acts as a _____ agent. **Practice:** a) Assign oxidation numbers to all atoms in the equation. b) Indicate the oxidizing and reducing agents in each of the following reactions. 1. $C + O_2 \rightarrow CO_2$ Oxidizing agent (gets reduced): Reducing Agent (gets oxidized): 2. $4 \text{ NH}_3 + 7 \text{ O}_2 \rightarrow 4 \text{ NO}_2 + 6 \text{ H}_2\text{O}$ Oxidizing agent (gets reduced): Reducing Agent (gets oxidized): 3. $C + 2 H_2 \rightarrow CH_4$ Oxidizing agent (gets reduced): *Reducing Agent (gets oxidized):* 4. $3 \operatorname{Sr} + 2 \operatorname{FeBr}_3 \rightarrow 2 \operatorname{Fe} + 3 \operatorname{SrBr}_2$ Oxidizing agent (gets reduced): Reducing Agent (gets oxidized): 5. $5 \text{ CO} + \text{Cl}_2\text{O}_5 \rightarrow 5 \text{ CO}_2 + \text{Cl}_2$ Oxidizing agent (gets reduced): Reducing Agent (gets oxidized): 6. 4 PH_{3 (g)} \rightarrow P_{4 (g)} + 6 H_{2 (g)} Oxidizing agent (gets reduced): Reducing Agent (gets oxidized): **Worksheet** Hebden Workbook Pg. 194 #5