Chemistry 12 Electrochemistry II

Name: Date: Block:

1. Half-Reactions

2. Balancing Redox Reactions

Half-Reactions

Consider the following reaction:

 $\operatorname{Zn}_{(s)}$ + 2 $\operatorname{Cu}_{(aq)}$ \rightarrow $\operatorname{Zn}^{2+}_{(aq)}$ + 2 $\operatorname{Cu}_{(s)}$

- Notice that 2 Cu⁺ ions are reduced for every 1 Zn atom oxidized.
- It is possible to separate out the reduction and oxidation portions of a redox reaction.
- Half-reactions: an equation representing either an oxidation or a reduction including the number of electrons lost or gained.

Oxidation: $\operatorname{Zn} \rightarrow \operatorname{Zn} {}^{2+} + 2 e^{-}$ Reduction: $\operatorname{Cu}^{+} + e^{-} \rightarrow \operatorname{Cu}$

Consider the following reaction:

 $IO_3^- + HSO_3^- \rightarrow SO_4^{-2-} + I_2$

Oxidation:

Reduction:

Balancing Half-Reactions Steps:

- 1.
 2.
 3.
 4.
- 5.
- Most reactions occur in acidic conditions. However, if it is stated that the reaction takes place in basic conditions...

6.

Practice:

Balance the following half-reactions. Also state whether this is an oxidation or a reduction:

1.	$ClO_4 \rightarrow Cl_2$			
Balance major atoms.	□ Balance O's.	Balance H's.	□ Balance charge. (check!)	
2. $Sm \rightarrow Sm^{3+}$				
Balance major atoms.	□ Balance O's.	□ Balance H's.	□ Balance charge. (check!)	
3. $NO_{3^{-}} \rightarrow NH_{4^{+}}$				
Balance major atoms.	□ Balance O's.	□ Balance H's.	□ Balance charge. (check!)	
4. $S_2O_3 \xrightarrow{2-} SO_4 \xrightarrow{2-}$ (basic)				
Balance major atoms.	□ Balance O's.	□ Balance H's.	□ Balance charge. (check!)	

Balancing Redox Reactions:

Rules:

1.
 2.
 3.
 4.
 5.

Practice:

$IO_3^- + HSO_3^- \rightarrow SO_4^{-2-} + I_2$

- Separate into two half reactions. (Look for common atoms to help you.)
- Balance each half reaction. (There must be an electron gain in one side and loss on the other!)

- Balance the electron loss and gain. (check oxidation numbers!)
- Add the balanced half-reactions together, cancelling where appropriate.

 $\begin{array}{l} \text{FeHPO}_3 + \text{Cr}_2\text{O}_7\text{}^2 \rightarrow \text{Cr}^{3+} + \text{H}_3\text{PO}_4 + \text{Fe}^{3+} \\ \text{(under basic conditions)} \end{array}$

A disproportionation reaction is a redox reaction in which the same species is both reduced and

oxidized. Since there is only one reactant, the reactant must be involved in both the reduction reaction and the oxidation reaction.

 $ClO_2^- \rightarrow ClO_3^- + Cl^-$

 $P_4 \rightarrow HPO_4 ^{2-} + PH_3$

Hebden Workbook Pg. 207 #24 Worksheet

EXERCISE:

19. Balance the following half-reactions.

- b) l₂ ___ i
- c) $Mn^{2+} \longrightarrow MnO_2$ (acidic solution)
- d) $O_2 \longrightarrow H_2O_2$ (acidic solution)
- e) $S_2O_8^{2-} \iff HSO_4^-$ (acidic solution)
- f) H₃AsO₄ = HAsO₂ (acidic solution)
- g) H₂SeO₃ = Se (acidic solution)

- h) N₂H₄ == N₂ (basic solution)
- i) $HO_2^- \iff O_2$ (basic solution)
- j) $HXeO_4^- \longrightarrow HXeO_6^{3-}$ (basic solution)
- k) $HC_2H_3O_2 \implies C_2H_5OH$ (acidic solution)
- 1) $Cr(OH)_3 \Longrightarrow CrO_4^{2-}$ (basic solution)
- m) $CH_3CHO \iff CH_2CH_2$ (acidic solution)

EXERCISE:

24. Balance the following redox equations.

a)
$$U^{4+} + MnO_4^- \longrightarrow Mn^{2+} + UO_2^{2+}$$
 (acidic)
b) $Zn + As_2O_3 \longrightarrow AsH_2 + Zn^{2+}$ (acidic)

- c) $Fe^{2+} + Or_2O_7^{2-} \longrightarrow Cr^{3+} + Fe^{3+}$ (acidic)
- d) $Cl_2 + SO_2 \longrightarrow Cl^- + SO_4^{2-}$ (acidic)
- e) $Cu + NO_3^- \longrightarrow Cu^{2+} + NO$ (acidic)

f)
$$S^{2-} + CIO_3^{-} \longrightarrow CI^{-} + S$$
 (basic)

g) $OCi \rightarrow Cl + ClO_3$ (basic)

h)
$$CN^{-} + IO_{3}^{-} \longrightarrow I^{-} + CNO^{-}$$
 (basic)

- i) $\operatorname{Sn}^{2+} + \operatorname{H}_2\operatorname{O}_2 \longrightarrow \operatorname{Sn}^{4+}$ (basic)
- j) $Br_2 \longrightarrow Br^+ + BrO_3^-$ (basic)

k)
$$HSO_3^- + IO_3^- \rightarrow I_2 + SO_4^{2-}$$
 (acidic)

I) $HNO_2 \rightarrow HNO_3 + NO_3$

m) $\operatorname{Mn}^{2+} + \operatorname{HBiO}_{3} \longrightarrow \operatorname{Bi}^{3+} + \operatorname{MnO}_{4}^{-} (\operatorname{acidic})$ n) $\operatorname{H}_{2}O_{2} + \operatorname{Cr}(OH)_{4}^{-} \longrightarrow \operatorname{CrO}_{4}^{2-} (\operatorname{basic})$ o) $\operatorname{Sb}_{2}S_{3} + \operatorname{NO}_{3}^{-} \longrightarrow \operatorname{NO}_{2} + \operatorname{SO}_{4}^{2-} + \operatorname{Sb}_{2}O_{5} (\operatorname{acidic})$ p) $\operatorname{As}_{2}S_{3} + \operatorname{NO}_{3}^{-} \longrightarrow \operatorname{NO} + \operatorname{SO}_{4}^{2-} + \operatorname{H}_{3}\operatorname{AsO}_{4} (\operatorname{acidic})$ q) $\operatorname{FeS} + \operatorname{NO}_{3}^{-} \longrightarrow \operatorname{NO} + \operatorname{SO}_{4}^{2-} + \operatorname{Fe}^{3+} (\operatorname{acidic})$ r) $\operatorname{FeHPO}_{3} + \operatorname{Cr}_{2}O_{7}^{2-} \longrightarrow \operatorname{Cr}^{3+} + \operatorname{H}_{3}\operatorname{PO}_{4} + \operatorname{Fe}^{3+} (\operatorname{acidic})$ s) $\operatorname{SnS}_{2}O_{3} + \operatorname{MnO}_{4}^{-} \longrightarrow \operatorname{Mn}^{2+} + \operatorname{SO}_{4}^{2-} + \operatorname{Sn}^{4+} (\operatorname{acidic})$ t) $\operatorname{CuS} + \operatorname{HNO}_{3} \longrightarrow \operatorname{Cu}(\operatorname{NO}_{3})_{2} + \operatorname{NO}_{2} + \operatorname{SO}_{2}$ u) $\operatorname{Ca}_{3}(\operatorname{PO}_{4})_{2} + \operatorname{SiO}_{2} + \operatorname{C} \longrightarrow \operatorname{P}_{4} + \operatorname{CaSiO}_{3} + \operatorname{CO}$ v) $\operatorname{KMnO}_{4} + \operatorname{H}_{2}S + \operatorname{H}_{2}\operatorname{SO}_{4} \longrightarrow \operatorname{K}_{2}\operatorname{SO}_{4} + \operatorname{MnSO}_{4} + \operatorname{S}$ w) $\operatorname{CuF}_{2} + \operatorname{NH}_{3} \longrightarrow \operatorname{Cu}_{3}\operatorname{N} + \operatorname{NH}_{4}\operatorname{F} + \operatorname{N}_{2}$