Electrochemistry III

Name: Date: Block:

1. SRP Table

Standard Reduction Potential (SRP) Table

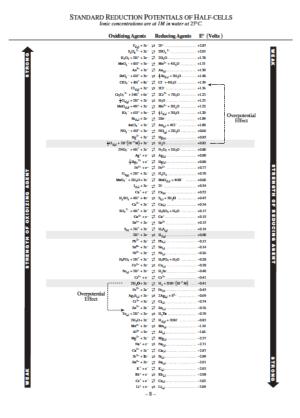
Similarly to BL-acids and bases, oxidizing and reducing agents vary in strengths as well.

Oxidizing Agents are REDUCED.

Its potential to be reduced is called its

The table is read ______ to _____.

$$F_{2(g)} + 2e^- \rightleftharpoons 2F^- \dots +2.87$$


Reducing Agents are OXIDIZED.

Its potential to be oxidized is called its

The table is read _____ to ____.

$$F_{2(g)} + 2e^- \rightleftharpoons 2F^- \dots +2.87$$

Example:

Strongest Reducing Agent:	Со	Sr	Al
Strongest Oxidizing Agent:	Fe ³⁺	Cu+	Na+
Greatest Reduction Potential:	Br-	I-	Sn ⁴⁺
Values:			
Greatest Oxidation Potential:	Cr³+	Pb	Нд
Values:			

$$Ag^+ + Al \rightarrow Ag + Al^{3+}$$

• Identify (and balance) the two half reactions:

- ✓ Note 1: Since "voltage" is the work done per electron, do not multiple the E^o value for the reduction of Ag^+ by 3.
- ✓ Note 2: If a half-reaction is reversed, the sign of its E^0 value is also reversed.
- What is the total cell potential? Is it spontaneous?

Spontaneous or non-spontaneous?

Br ₂ and I ⁻	Br and I ₂	
Br_2 is $a(n)$ agent. Half reaction:	Br- is a(n) agent. Half reaction:	
I- is a(n) agent. Half reaction:	I_2 is a(n) agent. Half reaction:	
Which is higher on the table?	Which is higher on the table?	
$Br_{2(\ell)} + 2e^- \rightleftharpoons 2Br^- \dots +1.09$	$Br_{2(\ell)} + 2e^- \rightleftharpoons 2Br^- \dots +1.09$	
$AuCl_4^- + 3e^- \rightleftharpoons Au_{(s)} + 4Cl^- \dots +1.00$	$AuCl_4^- + 3e^- \rightleftharpoons Au_{(s)} + 4Cl^- \dots +1.00$	
$O_3^- + 4H^+ + 3e^- \rightleftharpoons NO_{(g)} + 2H_2O + + 0.96$	$O_3^- + 4H^+ + 3e^- \rightleftharpoons NO_{(g)} + 2H_2O + + 0.96$	
$Hg^{2+} + 2e^{-} \rightleftharpoons Hg_{(\ell)} + 0.85$	$Hg^{2+} + 2e^{-} \rightleftharpoons Hg_{(\ell)} + 0.85$	
$H^{+}(10^{-7} \text{ M}) + 2e^{-} \rightleftharpoons H_{2}O \dots +0.82$	$H^{+}(10^{-7} M) + 2e^{-} \rightleftharpoons H_{2}O + 0.82$	
$O_3^- + 4H^+ + 2e^- \rightleftharpoons N_2O_4 + 2H_2O + 0.80$	$O_3^- + 4H^+ + 2e^- \rightleftharpoons N_2O_4 + 2H_2O + 0.80$	
$Ag^+ + e^- \rightleftharpoons Ag_{(s)} \dots +0.80$	$Ag^+ + e^- \rightleftharpoons Ag_{(s)} \dots +0.80$	
$\frac{1}{2} Hg_2^{2+} + e^- \rightleftharpoons Hg_{(\ell)} \dots +0.80$	$\frac{1}{2} \operatorname{Hg}_{2}^{2+} + e^{-} \rightleftharpoons \operatorname{Hg}_{(\ell)} \dots +0.80$	
$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+} \dots +0.77$	$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+} \dots +0.77$	
$O_{2(g)} + 2H^+ + 2e^- \rightleftharpoons H_2O_2 + \dots +0.70$	$O_{2(g)} + 2H^+ + 2e^- \rightleftharpoons H_2O_2 + 0.70$	
$^{-1}$ ₄ $^{-}$ + 2H ₂ O + 3e ⁻ \rightleftharpoons MnO _{2(s)} + 4OH ⁻ +0.60	$^{-1}_{4}$ + 2H ₂ O + 3e ⁻ \rightleftharpoons MnO _{2(s)} + 4OH ⁻ +0.60	
$I_{2(s)} + 2e^- \rightleftharpoons 2I^- \dots +0.54$	$I_{2(s)} + 2e^- \rightleftharpoons 2I^- \dots +0.54$	
Total Voltage:	Total Voltage:	
Spontaneous or non-spontaneous?	Spontaneous or non-spontaneous?	

When there are more than two chemicals available to react, the SRP table is used to predict which species will react.				
The predominant redox reaction will be between:				
and				
Practice: 1. What will the predominant redox reaction be with a mixture of Cl_2 , Ag^+ , Sn^{2+} and I^- ?				
Oxidizing Agents				
Reducing Agents				
2. Sn ⁴⁺ , Br ⁻ , Zn ²⁺ and Ag				
Oxidizing Agents				
Reducing Agents				

3. CuBr₂ and Al

4.	Na+, Cu+ and F-
5.	Copper metal and bromine liquid in a solution of iron (III) iodide
6.	I ₂ and CaF ₂
7.	Al, Fe ²⁺ and Cu ²⁺

8. Br₂ and NaCl

9. Sn and Al³⁺

Hebden Workbook Pg. 224 #36 - 38

For the following redox reactions, write each half reaction as a reduction:

$$2 A + G^{2+} \rightarrow 2 A^{+} + G$$

$$T + 2V \rightarrow T^{2+} + 2V^{-}$$

E+ oxidizes X to X²⁺

Reorder the following reactions to produce an SRP table with five half-reactions.

$$U^+ + e^- \rightarrow U$$

$$V^+$$
 + e- \rightarrow V

$$W^+ + e^- \rightarrow W$$

$$X^+ + e^- \rightarrow X$$

$$Y^+ + e^- \rightarrow Y$$

- 1. A solution of Y+ reacts spontaneously with V but not with U.
- 2. Solutions of U^+ , V^+ , Y^+ , and X^+ do not react spontaneously with W.
- 3. V+ reacts spontaneously with X.