Chemistry 12 Electrochemistry III

Name: Date: **Block:**

1. SRP Table

Standard Reduction Potential (SRP) Table

Similarly to BL-acids and bases, oxidizing and reducing agents vary in strengths as well.

	Strongest Oxidizing Agent:	Fe ³⁺	Cu+	Na+
left	Greatest Reduction Potential:	Br-	I-	Sn ⁴⁺
	Values:	NIA	NIA	+0.15V
-	Greatest Oxidation Potential:	Cr ³⁺	Pb	Hg
	Values:	N (A	(+)0.13V	(-)0.80V
			Fl:pped!	

Consider the following (unbalanced) redox reaction

$\begin{array}{c c} SAg + + Al \rightarrow SAg + Al^{S+} \qquad \qquad$	$Ag^{+} (AI) \rightarrow Ag^{+} (AI^{3})$ • Identify (and balance) the two half reactions: $Ag^{+} (AI) \rightarrow Ag^{+} (AI^{3})$ $E^{\circ} = +0.80V$ $E^{\circ} = +0.80V$ $E^{\circ} = +1.66V$ • Note 1: Since "voltage" is the work done per electron, do not multiple the E° value for the reduction of Ag^{+} by 3. • Note 2: If a half-reaction is reversed, the sign of its E° value is also reversed. • What is the total cell potential? Is it spontaneous?				
$\begin{array}{c c} & Br and I_2 \\ \hline \\ Br_2 and I \\ \hline \\ Br_2 is a(n) \underbrace{OXidiziv_n}_{distan} agent. \\ Half reaction: \\ \mathcal{D}_1 = \rightarrow \widehat{I}_2 + 2 \in 1 \\ \hline \\ Which is higher on the table? \\ OA is higher than RA = sport \\ \hline \\ Br_{2(n)} + 2e^{-\frac{1}{2}} \stackrel{?}{=} 2Br^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ Hg^{2+} + 2e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ Hg^{2+} + 2e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4CI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4UI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4UI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 2e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4UI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4UI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4UI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4UI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4UI^{-\frac{1}{2}} + 1.09 \\ AucI_4 + 3e^{-\frac{1}{2}} \stackrel{?}{=} Au_{(a)} + 4UI^{-\frac{1}{2}} + 1.09 $	$3Ag^+ + Al \rightarrow 3Ag + Al^{S+}$ $= \pm 2.46V$ Spontaneous or non-spontaneous? $= \pm 2.46V$ Spontoneous				
Br ₂ is a(n) $0x$ idizing agent. Half reaction: $g_{12} + 2e^{-} \rightarrow 2B^{-}$ I-is a(n) reducing agent. Half reaction: $g_{12} - \rightarrow I_{2} + 2e^{-}$ Which is higher on the table? OA is higher than RA = spont $Br_{2}(r)^{+}2e^{-} \neq 2B^{-}$ (Higher than RA = spont $Br_{2}(r)^{+}2e^{-} \neq B^{-}$ (Higher than RA =	Br ₂ and I-	Br and I_2			
$10tal \ voltage: \ 1.0\ (V + (-0.54V) - 1) \ 10tal \ voltage: \ -1.09 + 0.54 = (-)$	Br ₂ is a(n) <u>Oxidizing</u> agent. Half reaction: Br ₂ + 2e ⁻ \rightarrow 2Br I- is a(n) <u>reclues</u> agent. Half reaction: 2I - \rightarrow I ₂ + 2e ⁻ Which is higher on the table? OA is higher than RA = sport Br ₂ (t) + 2e ⁻ \neq 2Br ⁻ +1.09 AuCl ₄ + 3e ⁻ \neq Au _(x) + 4Cl ⁻ +1.00 O ₃ - 4H ⁺ + 3e ⁻ \neq NO _(g) + 2H ₂ O +0.96 Hg ²⁺ + 2e ⁻ \neq Hg _(t) +0.85 H ⁺ (10 ⁻⁷ M) + 2e ⁻ \neq H ₂ O +0.80 Ag ⁺ + e ⁻ \neq Ag _(s) +0.80 $Ag^+ + e^- \neq Ag(s) +0.80Fe^{3+} + e^- \neq Hg(t) +0.80Fe^{3+} + $	Br-is a(n) <u>reducing</u> agent. Half reaction: $2B^{-} \rightarrow B_{\Gamma_{2}} + 2e^{-}$ I ₂ is a(n) <u>Oxidizing</u> agent. Half reaction: $I_{2} + 2e^{-} \rightarrow 2I^{-}$ Which is higher on the table? PA is higher on the table? PA is higher than $OA = \text{Ponport}$ $Br_{2(\ell)} + 2e^{-} \neq 2Br^{-}$			

When there are **more than two** chemicals available to react, the SRP table is used to predict which species will react.

The predominant redox reaction will be between:

Storgest OA and Storgest RA

Practice:

1. What will the predominant redox reaction be with a mixture of Cl₂, Ag⁺, Sn²⁺ and I⁻?

Fe²⁺, AI

Sport.

Hebden Workbook Pg. 224 #36 - 38