Chemistry 12 Electrochemistry V

Name: Date: **Block:**

- 1. Electrolysis
- 2. Electrolytic Cell

Electrolysis

- Electrolysis: the transformation of ______ energy into ______ energy.
 Used mainly in industry to ______ a compound into its elements.

 - The electrodes used are often inert (non-reactive) materials just involved in electron transfer

Electrochemical Cell	Electrolytic Cell	
• electricity.	•electricity.	
Transforms energy into	Transforms energy into	
energy.	energy.	
•a voltage source.	• a voltage source.	
• half cells.	• cell.	
• redox reaction.	 redox reaction. E^o is 	
• E° is		
• salt bridge	• salt bridge.	
• Diagram:	• Diagram:	
Oxidation half reaction is the	Oxidation half reaction is the	
reduction half reaction in the SRP table.	reduction half reaction in the SRP table.	
• Will use the OA and	• Will use the OA and the RA.	
the RA.		
Electrons travel from theto	Electrons travel from the to	
the	the	

What Am I?

- 1. I have 2 half cells.
- 2. My oxidation half-reaction is: Ni \rightarrow Ni ²⁺ + 2 e- and my reduction half reaction is Fe²⁺ + 2 e- \rightarrow Fe
- 3. Oxidation occurs at my anode.
- 4. I transform chemical energy into electricity
- 5. In order to flow, the electrical charge requires a complete path or circuit.
- 6. You can use the SRP table to calculate how much voltage is "takes" to operate me.
- 7. My E° is +0.94V.

Overpotential Effect of WATER:	Oxidizing Agents Reducing	Agents E° (Volts)	
H_2O exhibits a higher potential than its			
true position on the table and therefore	$ClO_4^- + 8H^+ + 8e^- \rightleftharpoons Cl^- + 4H_2O$ +1.39		
	$\operatorname{Cl}_{2(g)} + 2e^{-} \rightleftharpoons 2\operatorname{Cl}^{-} \dots$		
needs to be re-positioned.	$\operatorname{Cr}_2\operatorname{O_7}^{2-} + 14\operatorname{H}^+ + 6\operatorname{e}^- \rightleftharpoons 2\operatorname{Cr}^{3+} + 7\operatorname{H}_2\operatorname{O} \dots$		
	$\frac{1}{2}O_{2(g)} + 2H^{+} + 2e^{-} \rightleftharpoons H_{2}O \dots \dots$		
H ₂ O as a REDUCING Agent Half Reaction:	$IO_{2(s)}^{-} + 6H^{+} + 5e^{-} \rightleftharpoons \frac{1}{2}I_{2(s)} + 3H_2O \dots$	+1.20	
	$\operatorname{Br}_{2(\ell)} + 2e^- \rightleftharpoons 2Br^-$		
	$\operatorname{AuCl}_4^{2(\varepsilon)} \operatorname{Au}_{(s)} + 4\operatorname{Cl}^- \dots$		
	$NO_3^- + 4H^+ + 3e^- \rightleftharpoons NO_{(g)} + 2H_2O$	+0.96	
	$Hg^{2+} + 2e^- \rightleftharpoons Hg_{(\ell)} \dots \dots$		
	$\frac{1}{2}O_{2(g)} + 2H^{+}(10^{-7} \text{ M}) + 2e^{-} \rightleftharpoons H_{2}O \dots$		
E°=	$2NO_3^- + 4H^+ + 2e^- \rightleftharpoons N_2O_4 + 2H_2O \dots$		
	$Ag^+ + e^- \rightleftharpoons Ag_{(r)} \dots \dots$	+0.80	
H ₂ O as an OXIDIZING Agent	$Cr^{3+} + e^- \rightleftharpoons Cr^{2+} \dots$		
Half Reaction:	$2H_2O + 2e^- \rightleftharpoons H_2 + 2OH^-(1)$,	
E°=	Overpotential $Fe^{2+} + 2e^{-} \rightleftharpoons Fe_{(1)} \dots \dots$		
	Effect $Ag_2s_{(s)} + 2e \leftarrow 2Ag_{(s)} + s$		
	$Cr^{3+} + 3e^- \rightleftharpoons Cr_{(s)}$		
	$Zn^{2+} + 2e^- \rightleftharpoons Zn_{(i)}$		
	$Te_{(s)} + 2H^+ + 2e^- \rightleftharpoons H_2Te$		
	$2H_2O + 2e^- \rightleftharpoons H_{2(g)} + 2OH$		
	$Mn^{2+} + 2e^- \rightleftharpoons Mn_{(s)} \dots \dots$	-1.19	

Example 1: Identify the half-reactions occurring in an electrolytic cell with carbon electrodes in molten MgI₂ and predict the voltage required to operate this cell.

- Identify the oxidizing agent and the reducing agent.
- Write the two half-reactions and calculate the voltage required.
- Draw the electrolytic cell:

Example 2: Identify the half-reactions that occur in the electrolysis of an aqueous solution of manganese (II) bromide with platinum electrodes and predict the voltage required to operate this cell.

- Identify the oxidizing agent and the reducing agent.
- Write the two half-reactions and calculate the voltage required.
- Draw the electrolytic cell:

Example 3: Identify the half-reactions that occur in an electrolytic cell consisting of copper electrodes in an aqueous solution of CrBr₃ and predict the voltage required to operate this cell.

- \circ $\;$ Identify the oxidizing agent and the reducing agent.
- Write the two half-reactions and calculate the voltage required.
- Draw the electrolytic cell:

Practice:

For the following, draw the electrolytic cell and the half-reactions occurring within it and the voltage required to operate the cell.

1. Platinum electrodes in $CaSO_{4(aq)}$

2. Iron electrodes in NaCl (aq)

3. Carbon electrodes in molten NiBr₂

4. Inert electrodes in $CuBr_{2(aq)}$