\author{

1. Electrolysis \\ 2. Electrolytic Cell
}

Electrolysis

Electrolysis: the transformation of \qquad energy into \qquad energy.

- Used mainly in industry to \qquad a compound into its elements.
- The electrodes used are often inert (non-reactive) materials - just involved in electron transfer

Electrochemical Cell	Electrolytic Cell
\qquad electricity. - Transforms \qquad energy into \qquad energy.	\qquad electricity. - Transforms \qquad energy into \qquad energy.
- ___ a voltage source.	- ___ a voltage source.
- ___ half cells.	- ___ cell.
\qquad redox reaction. - E^{o} is . \qquad	\qquad redox reaction. - E^{0} is \qquad .
\qquad salt bridge	- ___ salt bridge.
- Diagram:	- Diagram:
- Oxidation half reaction is \qquad the reduction half reaction in the SRP table.	- Oxidation half reaction is \qquad the reduction half reaction in the SRP table.
- Will use the \qquad OA and the \qquad RA.	- Will use the \qquad OA and the \qquad RA.
- Electrons travel from the \qquad to the \qquad .	- Electrons travel from the \qquad to the \qquad .

What Am I?

1. I have 2 half cells.
2. My oxidation half-reaction is: $\mathrm{Ni} \rightarrow \mathrm{Ni}^{2+}+2 \mathrm{e}-$ and my reduction half reaction is $\mathrm{Fe}^{2+}+2 \mathrm{e}-\rightarrow \mathrm{Fe}$
3. Oxidation occurs at my anode.
4. I transform chemical energy into electricity
5. In order to flow, the electrical charge requires a complete path or circuit.
6. You can use the SRP table to calculate how much voltage is "takes" to operate me.
7. $\mathrm{My} \mathrm{E} \mathrm{E}^{\circ}$ is +0.94 V .

Electrolytic Cells

THINGS TO CONSIDER:

Liquid Content:

Molten "melted"

Ex.

Electrodes:

Inert "non-reactive"

Non-inert
"reactive"

Ex.

Ex.

Ex.
"dissolved in water"

Overpotential Effect of WATER:

$\mathrm{H}_{2} \mathrm{O}$ exhibits a higher potential than its true position on the table and therefore needs to be re-positioned.
$\mathrm{H}_{2} \mathrm{O}$ as a REDUCING Agent
Half Reaction:
$\mathrm{E}^{0}=$
$\mathrm{H}_{2} \mathrm{O}$ as an OXIDIZING Agent
Half Reaction:
$\mathrm{E}^{\mathrm{o}}=$
Aqueous
x.

Oxidizing Agents Reducing Agents $\quad \mathbf{E}^{\circ}$ (Volts)

$$
\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightleftarrows 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \quad \ldots \quad . \quad . \quad+1.23
$$

$$
\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{H}_{2} \mathrm{O} \ldots \ldots \ldots \ldots . . .
$$

$$
\begin{gathered}
\stackrel{2}{2} \mathrm{O}_{2(\mathrm{l})}+2 \mathrm{n} \\
\mathrm{MnO}_{2(\mathrm{I})}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \\
\rightleftarrows \\
\rightleftarrows
\end{gathered} \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \ldots \ldots . .+1.22
$$

$$
1 \mathrm{O}_{3}^{-}+6 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightleftarrows \frac{1}{2} \mathrm{I}_{2(\mathrm{~s})}+3 \mathrm{H}_{2} \mathrm{O} \ldots \ldots \ldots . .+1.20
$$

$$
\mathrm{Br}_{2(\theta)}+2 \mathrm{e}^{-} \rightleftarrows 2 \mathrm{Br}^{-} \ldots
$$

$$
\mathrm{AuCl}_{4}^{-}+3 e^{-} \rightleftarrows \mathrm{Au}_{(\mathrm{r})}+4 \mathrm{Cl}
$$

$$
\mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+3 \mathrm{e}^{-} \rightleftarrows \mathrm{NO}_{(\mathrm{e})}+2 \mathrm{H}_{2} \mathrm{O} \ldots
$$

$$
\mathrm{Hg}^{2+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{Hg}_{(\ell)}
$$

$$
\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})}+2 \mathrm{H}^{+}\left(10^{-7} \mathrm{M}\right)+2 \mathrm{e}^{-} \rightleftarrows \mathrm{H}_{2} \mathrm{O} .
$$

$$
2 \mathrm{NO}_{3}^{-}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightleftarrows \mathrm{N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O} \ldots
$$

$$
\mathrm{Ag}^{+}+\mathrm{e}^{-} \rightleftarrows \mathrm{Ag}_{(s)} \ldots
$$

Example 1: Identify the half-reactions occurring in an electrolytic cell with carbon electrodes in molten MgI_{2} and predict the voltage required to operate this cell.

- Identify the oxidizing agent and the reducing agent.
- Write the two half-reactions and calculate the voltage required.
- Draw the electrolytic cell:

Example 2: Identify the half-reactions that occur in the electrolysis of an aqueous solution of manganese (II) bromide with platinum electrodes and predict the voltage required to operate this cell.

- Identify the oxidizing agent and the reducing agent.
- Write the two half-reactions and calculate the voltage required.
- Draw the electrolytic cell:

Example 3: Identify the half-reactions that occur in an electrolytic cell consisting of copper electrodes in an aqueous solution of CrBr_{3} and predict the voltage required to operate this cell.

- Identify the oxidizing agent and the reducing agent.
- Write the two half-reactions and calculate the voltage required.
- Draw the electrolytic cell:

Practice:

For the following, draw the electrolytic cell and the half-reactions occurring within it and the voltage required to operate the cell.

1. Platinum electrodes in $\mathrm{CaSO}_{4(\mathrm{aq})}$
2. Iron electrodes in $\mathrm{NaCl}_{\text {(aq) }}$
3. Carbon electrodes in molten NiBr_{2}
4. Inert electrodes in CuBr_{2} (aq)
