## Chemistry 12 Electrochemistry V

Name: Date: es **Block:** 

- 1. Electrolysis
- 2. Electrolytic Cell

Electrolysis

Electrolysis: the transformation of electrical energy into chemical energy.

- Used mainly in industry to separate a compound into its elements.
- The electrodes used are often inert (non-reactive) materials just involved in electron transfer

|                    | Electrochemical Cell                                             | Electrolytic Cell                                                                    |
|--------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|                    | • Makes electricity.                                             | • Jakes electricity.                                                                 |
|                    | <ul> <li>Transforms <u>choncel</u> energy into</li> </ul>        | Transforms electrical energy into                                                    |
|                    | electrical energy.                                               | <u>cherical</u> energy.                                                              |
|                    | • <u>IS</u> a voltage source.                                    | • Requires a voltage source.                                                         |
| (                  | • half cells.                                                    | • cell.                                                                              |
| allows)            | · Spontaneous redox reaction.                                    | • Non Polt redox reaction.                                                           |
| e-<br>flow)        | • E° is positive.                                                | • E° is <u>ne gative</u> .                                                           |
|                    | • <u>Needs</u> salt bridge                                       | • <u>No</u> salt bridge.                                                             |
|                    | • Diagram:                                                       | • Diagram:                                                                           |
|                    |                                                                  |                                                                                      |
| 0>                 | • Oxidation half reaction is below the                           | • Oxidation half reaction is <u>Above</u> the C                                      |
| $\leftarrow \circ$ | reduction half reaction in the SRP table.                        | reduction half reaction in the SRP table. $\diamond$                                 |
|                    | • Will use the <u>Strongest</u> OA and the <u>Strongest</u> RA.  | • Will use the <u>Strongest</u> OA and<br>the <u>Strongest</u> RA.                   |
|                    | • Electrons travel from the <u>anode</u> to the <u>Cathode</u> . | <ul> <li>Electrons travel from the <u>anode</u> to<br/>the <u>Cathode</u></li> </ul> |



\* Water is Weaker than how it appears

(10 Water) Example 1: Identify the half-reactions occurring in an electrolytic cell with carbon electrodes in molten MgI<sub>2</sub> and predict the voltage required to operate this cell.

(- voltage)

(inert)

• Identify the oxidizing agent and the reducing agent.

Mg 2+

21

H2+20H

$$\frac{OA}{Mg^{2+}} = \frac{RA}{I^{-}}$$

Write the two half-reactions and calculate the voltage required.



Maz+

(Mn<sup>2+</sup> spectator)



## **Practice:**

For the following, draw the electrolytic cell and the half-reactions occurring within it and the voltage required to operate the cell.



