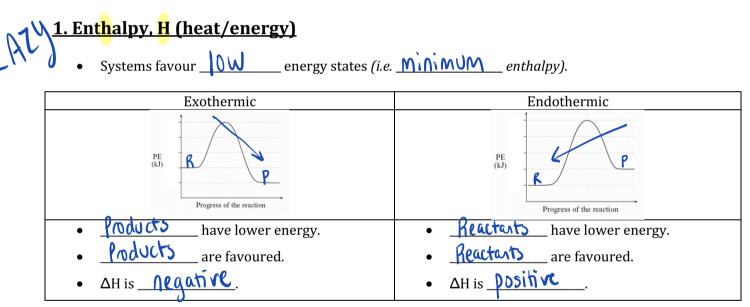

Chemistry 12 Equilibrium I

Name: Date: Block:

1. Enthalpy and Entropy


2. Reverse & Forward Rates

Enthalpy and Entropy

In general, reactions either...

- 1. Occur
 - The **DNdJCS** are favoured.
 - A) B
- 2. Do not occur
 - The <u>(Cactants</u> are favoured.
 - A < B
- 3. Reach equilibrium
 - ('득

To determine whether the products or reactants are favoured (preferred), we look at two different factors:

For the following reactions, does **minimum enthalpy** favour the reactants or products?

Reaction:	Which side is favoured? Reactant/Product/Cannot be determined		
a) $A_{(g)} + B_{(g)} \stackrel{?}{\leftrightarrow} C_{(g)} + heat$ ((1))	Products		
b) $D_{(s)}$ + heat $\stackrel{?}{\leftrightarrow} E_{(g)}$ (endo)	Reactants		
c) $F_{(aq)} \stackrel{?}{\leftrightarrow} G_{(aq)} \Delta H = -10 kJ$	Products		
d) H (s) $\stackrel{?}{\leftrightarrow}$ I (g) + J (g) Δ H = +10kJ	Reactants		
e) K (g) + L (g) $\stackrel{?}{\leftrightarrow}$ M (g) + N (g) + O (g)	Cannot be determined		

<u>Ent<mark>r</mark>opy, S (<mark>r</mark>andomness)</u>

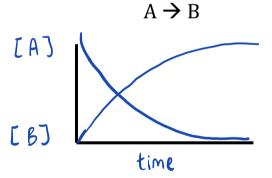
Nosin

• Systems favour the side with MDPC dis

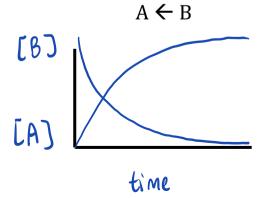
Solid	Liquid	Aqueous	Gas		
			●= =● _		
Atoms locked in place, vibrating.	Atoms slipping and sliding past each other.	Atoms and ions slipping and sliding past each other.	Atoms zipping and zooming, little contact.		
Max entropy					
Min entropy					

The side with the greater number of molecules with higher entropy will be favoured.

about entropy until much later ...


For the following reactions, does **maximum entropy** favour the reactants or products?

Reaction:	Which side is favoured? Reactant/Product/Cannot be determined	
a) $A_{(g)} + B_{(g)} \stackrel{?}{\leftrightarrow} C_{(g)} + heat$	Reactants	
b) D _(s) + heat $\stackrel{?}{\leftrightarrow}$ E _(g)	Products	
c) $F_{(aq)} \stackrel{?}{\leftrightarrow} G_{(aq)} \Delta H = -10 kJ$	Cannot be determined	
d) H _(s) $\stackrel{?}{\leftrightarrow}$ I _(g) + J _(g) Δ H = +10kJ	Poducts	
e) K _(g) + L _(g) $\stackrel{?}{\leftrightarrow}$ M _(g) + N _(g) + O _(g)	Products	


Putting it all together	LAZY (Min. Enthalpy)	Messy (Max. Entwy)	Both products are favoured
Reaction	Reaction direction which enthalpy favours? Reactant/Product	Reaction direction which entropy favours? Reactant/Product	Spontaneous/ Non-spontaneous/ Contractioners one of Reactants are contractioned
a) $CaCO_{3(s)} + 178 \text{ kJ} \stackrel{?}{\leftrightarrow} CaO_{(s)} + CO_{2(g)}$	 R	- P ->	fanured taroured
b) $2NO_{(g)} + O_{2(g)} \stackrel{?}{\leftrightarrow} 2NO_{2(g)} + 113 \text{ kJ}$	P	K	E
c) $2C_{(s)} + 2H_{2(g)} \stackrel{?}{\leftrightarrow} C_2H_{4(g)} \Delta H = +52.3 \text{ kJ}$		<r></r>	<ns-< del=""></ns-<>
d) $2Li_{(s)} + 2H_2O_{(l)} \stackrel{?}{\leftrightarrow} 2LiOH_{(aq)} + H_{2(g)} \Delta H = -433 \text{ kJ}$	\rightarrow		<u> </u>
d) $KCl_{(s)} \stackrel{?}{\leftrightarrow} K^{+}_{(aq)} + Cl^{-}_{(aq)}$ $\Delta H = -17 \text{ kJ}$	P	P	-S->
f) $\operatorname{Zn}_{(s)} + 2\operatorname{Ag}_{(aq)}^{*} \leftrightarrow \operatorname{Zn}_{(aq)}^{*} + 2\operatorname{Ag}_{(s)}^{*} + 169 \text{ kJ}$	\rightarrow	R	-3-
l solid l aqueous 2 aqueous Z solid			
Hebden Pg. 48 #14, 15			

Reverse and Forward Rates

Up until now reactions have been written using a one-sided arrow \rightarrow to represent the **forward** reaction.

In the last unit, you learned that some reactions are reversible and \leftarrow can be used to represent the **reverse** reaction.

When both the forward and reverse reaction take place, this is written by using a double-sided arrow.

 $A \rightleftharpoons B$

- Before equilibrium is reached, A is turning into B very quickly.
 - Forward rate is fast but <u>slows down</u>.
 Reverse rate is <u>but speed vp</u>.
 (A)
 (B)
 (B)
 (B)
 (C)
 <l
- The forward and reverse rate continues to occur.

There are 3 criteria for a system to be at chemical equilibrium:

- 1. Have constant macroscopic properties.
 - Colour, pH, temperature, pressure remain constant.
 - Minor unobservable changes happen on an atomic or molecular level.
 - <u>Self-perpetrating</u> because the forward and reverse reactions continuously supply each other with reactants.
- 2. Be <u>Closed</u>
 - No chemicals entering or leaving the system.
 - Amount of chemicals is held within the system.
- 3. <u>Shift</u> when conditions change.
 - Results in a change or shift in amount of reactants and products.
 - Equilibrium will be re-established in response to the change.

Complete Enthalpy and Entropy Worksheet