Chemistry 12 Equilibrium II

_ 7 (pg 50-55)

Name: Date: Block:

- 1. Le Châtelier's Principle
- 2. Equilibrium Graphs

Le Châtelier's Principle

When a person is stressed, their body will work in some way to alleviate the imposed stress.

Le Châtelier's Principle: An equilibrium system subjected to a stress will <u>Shift</u> to partially alleviate the stress and <u>CSTOC</u> equilibrium.

• Whenever a system is stressed, it alleviates it by altering the concentration of reactants or products.

When a system responds by changing some **reactants into products**, the response is referred to as ____" because the <u>products are on the right side</u> of the chemical equation. shift riaht B AB A + 7 When a system responds by changing some **products back into reactants**, the response is referred to as " shift eft " because the <u>reactants are on the left side</u> of the chemical equation. ß AB А 4 Stresses - Changes in conditions: **1.** Concentration $2 \text{ NOCl}_{(g)} \Leftrightarrow 2 \text{ NO}_{(g)} + \text{Cl}_{2(g)}$

In which direction will the reaction shift to alleviate the stress. Compare the concentration of each substance before the stress:

Addition of NOCl_(g):
• Shift: Right
• NOCl]
$$\downarrow$$
 [NO] \uparrow [Cl₂] \downarrow has shifted to words products
• Shift: Left
• [NOCl] \uparrow [NO] \downarrow [Cl₂] \downarrow
• Removal of NO_(g):
• Shift: Right
• [NOCl] \downarrow [NO] \uparrow [Cl₂] \downarrow
• Removal of Cl_{2(g)}:
• Shift: Right
• [NOCl] \downarrow [NO] \uparrow [Cl₂] \uparrow

In which direction will the reaction shift to alleviate the stress:

Consider the following equilibrium system:

$$2 \operatorname{SO}_{2 (g)} + \operatorname{O}_{2 (g)} \leftrightarrows 2 \operatorname{SO}_{3 (g)}$$

Explain in terms of forward and reverse reaction rates how the equilibrium would respond to each of the following changes:

Application:

Hemoglobin is the protein in red blood cells that transports oxygen to cells throughout your body. Each hemoglobin (Hb) molecule attaches to four oxygen molecules:

$$Hb_{(aq)} + 4 O_{2 (aq)} \leftrightarrows Hb(O_{2})_{4 (aq)}$$

In which direction does the above equilibrium shift in each of the following situations:

a) At high elevations the air pressure is lowered reducing the $[O_2]$ in the blood.

Shift left

b) At high altitude, climbers breathe pressurized oxygen from a tank to increase the [O₂] in the blood.

Shift right

c) People who live at higher altitudes produce more hemoglobin.

Shift right

d) Carbon monoxide poisoning occurs when carbon monoxide molecules bind to hemoglobin instead of oxygen molecules. Carboxyhemoglobin is even redder than oxyhemoglobin; therefore, one symptom of carbon monoxide poisoning is a flushed face.

Kno spikes

2. Temperature

• The system will shift to remove some of the added kinetic energy or to replace some of the remove kinetic energy.

 $| \{ | \} | \} = 1 + N_2 (g) + O_2 (g) \Rightarrow 2 NO (g)$

$$\Delta H = +181 \text{ kJ/mol}$$

1. Is this an endothermic or exothermic reaction?

endothermic

2. Rewrite the equation with "heat" as a reactant or product.

$$181k5 + N_{2(g)} + O_{2(g)} \rightleftharpoons 2NO_{(g)}$$

3. If the system is heated, in which direction will the system shift to restore equilibrium? *Think of the term "heat" as a reactant or product that is being added or consumed.*

- 4. If the system is cooled, in which direction will the system shift to restore equilibrium?
 - Think of the term "heat" as a reactant or product that is being added or consumed.

Example:

Given the following graph showing the concentrations of species A, B and C, state what changes in **temperature** or **concentration** are responsible for each of the shifts shown on the graph. The

a)	At time I, the reaction shifted <u>right</u>	The stress is <u>Added B</u>	
b)	At time II, the reaction shifted	The stress is	
c)	At time III, the reaction shifted left	The stress is added C	
d)	At time IV, the reaction shifted \underline{right}	. The stress is decreased temp	

J

* ALL spikes

3. Pressure/Volume (only gases)

- The system will respond to volume changes by shifting to relieve some of the added pressure or to replace some of the lost pressure.
- Recall from Chemistry 11:

2

o Avogadro's Hypothesis: Equal volumes of different gases, measured the same temperature and 22.4L CSTP pressure, have equal numbers of particles.

$$PCl_3$$
 (g) + Cl_2 (g) \Leftrightarrow PCl_5 (g)

- 1. How many moles of gases are on each side? Reactant : 1 mol of PC13 & 1 mol of Clz
- 2. If the volume was increased... (or pressure was <u>decreased</u>) a. What would happen to the concentration of each gas?

All [gas] will decrease

Product : 1 mol of PCIS

b. Will the equilibrium shift? If so, towards which side?

yes - shifts left (to the side with more molecules)

3. If the pressure was increased... (or volume was ______ a. What would happen to the concentration of each gas?

All [gas] will increase

b. Will the equilibrium shift? If so, towards which side?

$$H_2_{(g)} + F_2_{(g)} \Leftrightarrow 2 HF_{(g)}$$

1. How many moles of gases are on each side?

Reactant : 2 Product : 2

All [gas] decrease

b. Will the equilibrium shift? If so, towards which side?

 $(t_2)^{3.}$

3. If the pressure was increased... (or volume was <u>decreased</u>) a. What would happen to the concentration of each gas?

All [gas] increase

b. Will the equilibrium shift? If so, towards which side?

4. Catalyst

- Does not change or shift the equilibrium
- Forward and reverse rates are increased by same amount

