Chemistry 12
Equilibrium II

II 4
(pg $50-55$)

Name:
Date:
Block:

1. Le Châtelier's Principle
 2. Equilibrium Graphs

Le Châtelier's Principle

When a person is stressed, their body will work in some way to alleviate the imposed stress.
Le Châtelier's Principle: An equilibrium system subjected to a stress will Shift to partially alleviate the stress and \qquad equilibrium.

- Whenever a system is stressed, it alleviates it by altering the concentration of reactants or products.

When a system responds by changing some reactants into products, the response is referred to as "_shift right " because the products are on the right side of the chemical equation.

When a system responds by changing some products back into reactants, the response is referred to as "_shift_left_" because the reactants are on the left side of the chemical equation.

Stresses - Changes in conditions:

1. Concentration

$$
2 \mathrm{NOCl}_{(\mathrm{g})} \leftrightharpoons 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

In which direction will the reaction shift to alleviate the stress. Compare the concentration of each substance before the stress:

- Removal of $\mathrm{NO}_{(\mathrm{g})}$:
- Shift: Right
- [NOCl]
[NO] $\downarrow \uparrow$
$\left[\mathrm{Cl}_{2}\right] \uparrow$
- Removal of $\mathrm{Cl}_{2(\mathrm{~g})}$:
- Shift: Right

[NO]

$\left[\mathrm{Cl}_{2}\right] \downarrow \uparrow$
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2}(\mathrm{~g})=\mathrm{HI}_{(\mathrm{g})}$

In which direction will the reaction shift to alleviate the stress:

- Addition of $\mathrm{HI}_{(\mathrm{g})}$:

- Removal of $\mathrm{HI}_{(\mathrm{g})}$:

For every 2 mol of HI, 1 mol of H_{2} and 1 mol of I_{2} reacts

Consider the following equilibrium system:

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

Explain in terms of forward and reverse reaction rates how the equilibrium would respond to each of the following changes:
t, 1. Addition of $\mathrm{SO}_{2(\mathrm{~g})} \longrightarrow$
t_{2} 2. Removal of $\mathrm{O}_{2(\mathrm{~g})} \longleftarrow$
t_{3} 3. Addition of $\mathrm{SO}_{3(\mathrm{~g})} \longleftarrow$
t_{4} 4. Removal of $\mathrm{SO}_{3(\mathrm{~g})} \longrightarrow$

Application:

Hemoglobin is the protein in red blood cells that transports oxygen to cells throughout your body. Each hemoglobin (Hb) molecule attaches to four oxygen molecules:

$$
\mathrm{Hb}_{(\mathrm{aq})}+4 \mathrm{O}_{2(\mathrm{aq})} \leftrightharpoons \mathrm{Hb}\left(\mathrm{O}_{2}\right)_{4(\mathrm{aq})}
$$

In which direction does the above equilibrium shift in each of the following situations:
a) At high elevations the air pressure is lowered reducing the $\left[\mathrm{O}_{2}\right]$ in the blood.

Shift left
b) At high altitude, climbers breathe pressurized oxygen from a tank to increase the [O_{2}] in the blood.

Shift right

c) People who live at higher altitudes produce more hemoglobin.

Shift right

(less Hb)
d) Carbon monoxide poisoning occurs when carbon monoxide molecules bind to hemoglobin instead of oxygen molecules. Carboxyhemoglobin is even redder than oxyhemoglobin; therefore, one symptom of carbon monoxide poisoning is a flushed face.

2. Temperature

* no spikes

- The system will shift to remove some of the added kinetic energy or to replace some of the remove kinetic energy.

$$
181 \mathrm{~kJ}+\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{NO}_{(\mathrm{g})} \quad \Delta \mathrm{H}=€ 81 \mathrm{~kJ} / \mathrm{mol}
$$

1. Is this an endothermic or exothermic reaction?

endothermic

2. Rewrite the equation with "heat" as a reactant or product.

3. If the system is heated, in which direction will the system shift to restore equilibrium?

- Think of the term "heat" as a reactant or product that is being added or consumed.

4. If the system is cooled, in which direction will the system shift to restore equilibrium?

- Think of the term "heat" as a reactant or product that is being added or consumed.

Example:

Given the following graph showing the concentrations of species A, B and C, state what changes in
temperature or concentration are responsible for each of the shifts shown on the graph. The equilibrium equation is:

$$
A(g)+B(g) \rightleftarrows C(y)
$$

$\Delta \boldsymbol{H}=-65 \boldsymbol{k J}$

a) At time I, the reaction shifted \qquad .The stress is \qquad added B
b) At time II, the reaction shifted \qquad . The stress is \qquad increased temp
c) At time III, the reaction shifted \qquad The stress is \qquad added C
d) At time IV, the reaction shifted \qquad The stress is \qquad .

* All spikes

3. Pressure/Volume (only gases)

- The system will respond to volume changes by shifting to relieve some of the added pressure or to replace some of the lost pressure.
- Recall from Chemistry 11:
- Avogadro's Hypothesis: Equal volumes of different gases, measured the same temperature and pressure, have equal numbers of particles.

$$
\mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \leftrightharpoons \mathrm{PCl}_{5(\mathrm{~g})}
$$

$$
\frac{22.4 \mathrm{~L}}{1 \mathrm{MO}} \text { eSSTP }
$$

1. How many moles of gases are on each side?

Reactant: 1 mol of $\mathrm{PCl}_{3} \& 1 \mathrm{~mol}$ of Cl_{2}
Product: 1 mol of PCl_{5}
2. If the volume was increased... (or pressure was decreased)
a. What would happen to the concentration of each gas?

All [gas] will decrease
b. Will the equilibrium shift? If so, towards which side?
yes - shifts left (to the side with more molecules)
t_{2}
3. If the pressure was increased... (or volume was decreased,
a. What would happen to the concentration of each gas?

All [gas] will increase
b. Will the equilibrium shift? If so, towards which side?

Yes - shift right (to the side with fewer mole wees)

time

$$
-\mathrm{H}_{2(\mathrm{~g})}+\mathrm{F}_{2(\mathrm{~g})} \leftrightharpoons \underset{=}{2} \mathrm{HF}_{(\mathrm{g})}
$$

1. How many moles of gases are on each side?

$$
\text { Reactant: } 2
$$

$$
\text { Product: } 2
$$

2. If the volume was increased... (or pressure was decreased_)
a. What would happen to the concentration of each gas?
All [gas] decrease
b. Will the equilibrium shift? If so, towards which side?
No shift (same \# of molecules on both sides)
t_{2}
3. If the pressure was increased... (or volume was decreased,
a. What would happen to the concentration of each gas?
All [gas] increax
b. Will the equilibrium shift? If so, towards which side?

4. Catalyst

- Does not change or shift the equilibrium
- Forward and reverse rates are increased by same amount

Le Chatelier's Principle Worksheet
Hebden Read pg. 50-53, Questions pg. 54 \#17-28
Day 1 Just answer Q's on conc \& temp

