# Chemistry 12 $K_{eq}$ Calculations Worksheet

Name: Date: Block:

1. Given the equilibrium equation below:

$$A_{2(g)} + B_{2(g)} \leftrightharpoons 2AB_{(g)}$$

If, at equilibrium, the concentrations are as follows:

$$[A_2] = 3.45 \text{ M}, \qquad [B_2] = 5.67 \text{ M} \qquad \text{and} \qquad [AB] = 0.67 \text{ M}$$

- a) Write the expression for the equilibrium constant,  $K_{\text{eq}}\,$
- b) Find the value of the equilibrium constant,  $K_{\text{eq}}$  at the temperature that the experiment was done.

2. For the reaction:

$$A_{2(g)} + B_{(g)} \iff 2C_{(g)}$$

it is found that by adding  $1.5\,$  moles of C to a  $1.0\,$ L container, an equilibrium is established in which  $0.30\,$ moles of B are found.

- a) What is [A] at equilibrium?
- b) What is [B] at equilibrium?
- c) What is [C] at equilibrium?
- d) Write the expression for the equilibrium constant,  $K_{\text{eq}}. \label{eq:equilibrium}$
- e) Calculate the value for the equilibrium constant at the temperature at the experiment was done.

3. Considering the following equilibrium:

$$2AB_{3(g)} \leftrightharpoons A_{2(g)} + + 3B_{2(g)}$$

If 0.87 moles of  $AB_3$  are injected into a 5.0 L container at  $25^{\circ}$ C, at equilibrium the final  $[A_2]$  is found to be 0.070 M.

- a) Calculate the equilibrium [AB<sub>3</sub>].
- b) Calculate the equilibrium [A<sub>2</sub>].
- c) Calculate the equilibrium [B<sub>2</sub>].
- 4. Consider the reaction:

$$A_{(g)} + B_{(g)} \iff C_{(g)}$$

a) In an equilibrium mixture the following concentrations were found:

[A] = 0.45M, [B] = 0.63M and [C] = 0.30M. Calculate the value of the equilibrium constant for this reaction.

b) At the same temperature, another equilibrium mixture is analyzed and it is found that [B] = 0.21 M and [C] = 0.70 M. From this and the information above, calculate the equilibrium [A].

c) In another equilibrium mixture at the same temperature, it is found that [A] = 0.35 M and the [C] = 0.86 M. From this and the information above, calculate the equilibrium [B].

5. Two mole of gaseous  $NH_3$  are introduced into a 1.0 L vessel and allowed to undergo partial decomposition at high temperature according to the reaction:

$$2NH_{3(g)} \leftrightharpoons N_{2(g)} + 3H_{2(g)}$$

At equilibrium, 1.0 mole of  $NH_{3(g)}$  remains.

- a) What is the equilibrium  $[N_2]$ ?
- b) What is the equilibrium  $[H_2]$ ?
- c) Calculate the value of the equilibrium constant at the temperature of the experiment.

6. At a high temperature, 0.50 mol of HBr was placed in a 1.0 L container and allowed to decompose according to the reaction:

$$2HBr_{(g)} \iff H_{2(g)} + Br_{2(g)}$$

At equilibrium the  $[Br_2]$  was measured to be 0.13 M. What is  $K_{eq}$  for this reaction at this temperature?

| 7. | When 1.0 mol of $NH_{3(g)}$ and 0.40 mol of $N_{2(g)}$ are placed in a 5.0 L vessel and allowed to reach equilibrium |
|----|----------------------------------------------------------------------------------------------------------------------|
|    | at a certain temperature, it is found that 0.78 mol of NH <sub>3</sub> is present. The reaction is:                  |
|    | $2NH_{3(g)} = 3H_{2(g)} + N_{2(g)}$                                                                                  |

a) Calculate the equilibrium concentrations of all three species.

 $[NH_3] =$ \_\_\_\_\_  $[H_2] =$ \_\_\_\_\_  $[N_2] =$ \_\_\_\_\_

b) Calculate the value of the equilibrium constant at this temperature.

8. When 0.40 mol of  $PCl_5$  is heated in a 10.0 L container, an equilibrium is established in which 0.25 mol of  $Cl_2$  is present. (Make a table and answer the questions below. Be sure to read all questions a-d before making your table!:)

 $PCl_{5(g)} \leftrightharpoons PCl_{3(g)} + Cl_{2(g)}$ 

a) Calculate the equilibrium concentration of each species.

 $[PCl_5] =$ \_\_\_\_\_\_  $[Cl_2] =$ \_\_\_\_\_\_

- b) Calculate the value of the equilibrium constant,  $K_{eq}$  at the temperature of the experiment.
- c) What amount (moles) of PCl<sub>3</sub> is present at equilibrium?
- d) What amount (moles) of PCl<sub>5</sub> is present at equilibrium?

| 9. | A mixture of H <sub>2</sub> and I <sub>2</sub> is allowed to react at 448°C. When equilibrium is established, the concentrations of |
|----|-------------------------------------------------------------------------------------------------------------------------------------|
|    | the participants are found to be:                                                                                                   |

$$[H_2] = 0.46 \text{ M}, \quad [I_2] = 0.39 \text{ M} \quad \text{and} \quad [HI] = 3.0 \text{ M}.$$

The equation is:

$$H_{2(g)} + I_{2(g)} \leftrightharpoons 2HI_{(g)}$$

a) Calculate the value of  $K_{eq}$  at 448°C.

b) In another equilibrium mixture of the same species at  $448^{\circ}$ C, the concentrations of  $I_2$  and  $H_2$  are both 0.050 M. What is the equilibrium concentration of HI?

10. At a certain temperature the reaction:

$$CO_{(g)}$$
 +  $H_2O_{(g)}$   $\leftrightarrows$   $CO_{2(g)}$  +  $H_{2(g)}$ 

has a  $K_{eq}$  = 0.400. Exactly 1.00 mol of each gas was placed in a 100.0 L vessel and the mixture was allowed to react. Find the equilibrium concentration of each gas.

| 11. | The | reaction |    |
|-----|-----|----------|----|
| 11. | rne | reaction | r: |

$$2XY_{(g)} \hookrightarrow X_{2(g)} + Y_{2(g)}$$

has a  $K_{eq}$  = 35 at 25°C. If 3.0 moles of XY are injected into a 1.0 L container at 25°C, find the equilibrium [X<sub>2</sub>] and [Y<sub>2</sub>].

## 12. The equilibrium constant for the reaction:

$$H_{2(g)} + I_{2(g)} \iff 2HI_{(g)}$$
 at 448°C is 50.

a) If 1.0 mol of  $H_2$  is mixed with 1.0 mol of  $I_2$  in a 0.50 L container and allowed to react at 448°C, what is the equilibrium [HI]?

b) How many moles of HI are formed at equilibrium? (Actual yield)

| 13. | Cirron | IZ. | fon | +h~ | reaction: |
|-----|--------|-----|-----|-----|-----------|
| 15. | tilven | Nan | IOI | une | reaction: |
|     |        |     |     |     |           |

$$PCl_{5(g)} \leftrightharpoons PCl_{3(g)} + Cl_{2(g)}$$

is 0.042 at  $250^{\circ}$ C, what will happen if 2.50 mol of  $PCl_5$ , 0.600 mol of  $Cl_2$  and 0.600 mol of  $PCl_3$  are placed in a 1.00 flask at  $250^{\circ}$ C? (Will the reaction shift left, right, or not occur at all?)

# 14. Given the equilibrium equation:

$$H_{2(g)} + I_{2(g)} \leftrightharpoons 2HI_{(g)}$$

at 448°C,  $K_{eq}$  = 50. If 3.0 mol of HI, 2.0 mol of H<sub>2</sub>, and 1.5 mol of I<sub>2</sub> are placed in a 1.0 L container at 448°C, which way does the reaction shift?

#### 15. Given the equilibrium equation:

$$H_{2(g)} + I_{2(g)} \leftrightharpoons 2HI(g)$$

at 448°C, Keq = 50. If 5.0 mol of HI, 0.7071 mol of  $H_2$ , and 0.7071 mol of  $I_2$  are placed in a 1.0 L container at 448°C, which way does the reaction shift?

16. Determine the equilibrium constant for the reaction:

$$H_{2(g)} + I_{2(g)} \leftrightharpoons 2HI_{(g)}$$

given that an equilibrium mixture is analyzed and found to contain the following concentrations:  $[H_2] = 0.0075 \text{ M}, [I_2] = 0.000043 \text{ M}$  and [HI] = 0.0040 M

17. Given the equilibrium equation:

$$3A_{(g)} + B_{(g)} \iff 2C_{(g)}$$

If 2.50 moles of A and 0.500 moles of B are added to a 2.00 L container, an equilibrium is established in which the [C] is found to be 0.250 M.

a) Find [A] and [B] at equilibrium.

b) Calculate the value of the equilibrium constant K<sub>eq</sub>.

18. At 800°C, the equilibrium constant  $K_{eq} = 0.279$  for the reaction:

$$\mathsf{CO}_{2(g)} + \ \mathsf{H}_{2(g)} \ \leftrightharpoons \ \ \mathsf{CO}_{(g)} \ + \ \mathsf{H}_2\mathsf{O}_{(g)}$$

If 1.50 moles of  $CO_2$  and 1.50 moles of  $H_2$  are added to a 1.00 L container, what would the [CO] be at equilibrium?

| 19. | Given that the equilibrium | constant $K_{eq} = 0.015$ at 25°C for the reaction: |
|-----|----------------------------|-----------------------------------------------------|
| 1). | diven that the equilibrian | constant Req 0.015 at 25 d for the reaction.        |

$$A_{(g)} + B_{(g)} - C_{(g)} + D_{(g)}$$

if 1.0 mole of each gas is added to a 1.0 L container at 25°C, which way will the equation shift in order to reach equilibrium?

20. Calculate the equilibrium constant  $K_{\text{eq}}$  for the following reaction:

$$2A_{2(g)} + 3B_{2(g)} \leftrightharpoons 2A_2B_{3(g)}$$

given that the partial pressure of each substance at equilibrium is as follows: Partial Pressure of  $A_2$  = 20.0 kPa, Partial Pressure of  $B_2$  = 30.0 kPa, Partial Pressure of  $A_2B_3$  = 5.00 kPa.

21. Given the reaction:

$$4HCl_{(g)} + O_{2(g)} = 2H_2O_{(g)} + 2Cl_{2(g)}$$
 DH = -113 kJ

How will the value of the equilibrium constant  $K_{eq}$  at 550°C compare with its value at 450°C? Explain your answer.

22. The following system is at equilibrium, in a closed container:

$$4NH_{3(g)} + 3O_{2(g)} \rightleftharpoons 6H_2O_{(g)} + 2N_{2(g)} + heat$$

- a) How is the amount of  $N_2$  in the container affected if the volume of the container is doubled?
- b) How is the rate of the forward reaction affected if more water vapor is introduced into the container?
- c) How is the amount of  $O_2$  in the container affected if a catalyst is added?

## 23. Consider the following equilibrium system:

$$A_{(g)} + B_{(g)} - C_{(g)}$$

1.0 mole of A and 2.0 moles of B are simultaneously injected into an empty 1.0 L container. After 5.0 minutes, equilibrium is reached and [C] is found to be 0.20 M. Make calculations and draw graphs to show how each of [A], [B] and [C] change with time over a period of 10.0 minutes. (HINT: You have to make a table first.)

