Chemistry 12 Equilibrium V

Name: Date: Block:

 $K_{eq} = 0.040$

1. ICE Tables (cont'd)

2. Trial K_{eq}

ICE Tables

Determining Initial Concentrations from Keg and the Equilibrium Concentrations

(1) Some CH_3OH was injected into a flask where it established equilibrium with a [CO]=0.15M. What was the initial concentration of CH_3OH ?

 $_$ CH₃OH (g) \Leftrightarrow $_$ H_{2 (g)} + $_$ CO (g)

	CH ₃ OH (g)	4	H _{2 (g)}	+	CO _(g)
I					
C					
E					

(2) NiS reacted with O_2 in a 2.0L flask. When equilibrium was achieved, 0.36 mol of SO_2 were found in the flask. What was the original $[O_2]$ in the flask? $K_{eq} = 0.30$

	NiS _(s)	+	O _{2 (g)}	4	SO _{2 (g)}	+	NiO (s)
Initial							
Change							
Equilibrium							

(3) Some HI is pumped into a flask. At equilibrium, the [HI] = 0.60 mol/L. What is the initial [HI]?

 $_$ HI (g) \Leftrightarrow $_$ H₂(g) + $_$ I₂(g) K_{eq} = 0.25

(4) Some SO₂ and O₂ are injected into a flask. At equilibrium, the $[SO_2] = 0.050M$ and the $[O_2] = 0.040 M$. What was the initial $[O_2]$?

 $_$ SO_{2 (g)} + $_$ O_{2 (g)} \Leftrightarrow $_$ SO_{3 (g)} K_{eq} = 100.

Trial K_{eq}

With any given values of the concentration of product or reactant, a trial K_{eq} can be found. From this value, it can be predicted whether the reaction will proceed to the left or right to reach equilibrium.

Trial K_{eq} is also called the reaction quotient, Q.

Trial $K_{eq} = \frac{[products]}{[reactants]}$ @ any time

Remember...

The [reactants] and [products] will shift in order to reach equilibrium.

Comparing trial Keq and actual Keq...

1. If trial K_{eq} is greater than actual K_{eq}...

Trial $K_{eq} = \frac{[products]}{[reactants]}$

 $K_{eq} = \frac{[products]}{[reactants]}$

- More _____ will need to be formed.
- The reaction will shift _____.

2. If trial K_{eq} is less than actual K_{eq}...

Trial $K_{eq} = \frac{[products]}{[reactants]}$ $K_{eq} = \frac{[products]}{[reactants]}$ More ______ will need to be formed.

• The reaction will shift ______.

Example:

•

(1) The following gases are introduced into a closed flask: $0.057M SO_2$, $0.057M O_2$ and $0.12M SO_3$. In which direction will the reaction proceed to establish equilibrium?

 $___SO_{2(g)} + ___O_{2(g)} \Leftrightarrow ___SO_{3(g)}$ $K_{eq} = 85$

(2) The following gases are introduced into a closed 1.50 L flask: $1.5 \text{ mol of } NO_2 \text{ and } 4.0 \text{ mol } N_2O_4$. In which direction will the reaction proceed to achieve equilibrium?

 $__NO_{2(g)} \Leftrightarrow __N2O_{4(g)}$ $K_{eq} = 0.940$

(3) A mixture contains 0.025M CH₄, 0.045M H₂O, 0.10M CO and 0.30M H₂. In which direction will the reaction proceed to reach equilibrium?

 $\underline{\qquad} CH_{4\,(g)} + \underline{\qquad} H_2O_{(g)} \Leftrightarrow \underline{\qquad} CO_{(g)} + \underline{\qquad} H_{2\,(g)} \qquad K_{eq} = 4.7$

(4) At a certain temperature the reaction:

 $\underline{\qquad} CO_{(g)} + \underline{\qquad} H_2O_{(g)} \leftrightarrows CO_{2(g)} + \underline{\qquad} H_{2(g)}$

has a K_{eq} = 0.400. Exactly 1.00 mol of each gas was placed in a 100. L vessel and the mixture was allowed to react. Find the equilibrium concentration of each gas.