Chemistry 12 Equilibrium V
III. 8
(pa 63-72)

Name:
Date:
Block:

1. ICE Tables (cont'd)
2. Trial $K_{\text {eq }}$

ICE Tables
Determining Initial Concentrations from K_{eq} and the Equilibrium Concentrations
(1) Some $\mathrm{CH}_{3} \mathrm{OH}$ was injected into a flask where it established equilibrium with a [CO]=0.15M. What was the initial concentration of $\mathrm{CH}_{3} \mathrm{OH}$?

$$
\begin{aligned}
K_{e q}= & \frac{(0.30)^{2}(0.15)}{(x-0.15)}=0.040 \\
& \begin{aligned}
& 0.040 x-0.006=0.0135 \\
&+0.006 \\
& \frac{0.040 x}{0.040}=\frac{0.0195}{0.040} \quad x=0.4875
\end{aligned}
\end{aligned}
$$

(2) NiS reacted with O_{2} in a 2.0L flask. When equilibrium was achieved, 0.36 mol of SO_{2} were found in the flask. What was the original [O_{2}] in the flask? $\mathrm{K}_{\text {eq }}=0.30$

$$
\begin{aligned}
\text { Req }= \\
\begin{aligned}
& \frac{(0.18)^{2}}{(x-0.27)^{3}}=30.30 \\
& \frac{0.318797}{x-0.27}=0.6694 \\
& \begin{aligned}
0.6694 x-0.18077 & =0.318797 \\
+0.1807 & +0.1807
\end{aligned} \\
& 0.6694 x=0.499535
\end{aligned}
\end{aligned}
$$

(3) Some HI is pumped into flask. At equilibrium, the $[\mathrm{HI}]=0.60 \mathrm{~mol} / \mathrm{L}$. What is the initial $[\mathrm{HI}]$?

$$
\sqrt{0.09}=\sqrt{y^{2}}
$$

$$
0.3=y
$$

$$
\begin{gathered}
x-2 y=0.60 \\
x-2(0.3)=0.60 \\
x-0.6=0.6 \\
x=1.2
\end{gathered}
$$

(4) Some SO_{2} and O_{2} are injected into a flask. At equilibrium, the $\left[\mathrm{SO}_{2}\right]=0.050 \mathrm{M}$ and the $\left[\mathrm{O}_{2}\right]=0.040 \mathrm{M}$. What was the initial $\left[\mathrm{O}_{2}\right]$?

$$
\begin{gathered}
K_{e q}=\frac{(2 y)^{2}}{(0.050)^{2}(0.040)}= \\
\sqrt{0.01}=\sqrt{2} y^{2} \\
\frac{0.1}{2}=\frac{2 y}{z} \\
0.05=y
\end{gathered}
$$

$$
\begin{aligned}
& x-y=0.040 \\
& x-0.05=0.040 \\
& x=0.09 \\
& {\left[\mathrm{O}_{2}\right]=x=0.090}
\end{aligned}
$$

With any given values of the concentration of product or reactant, a trial $K_{\text {eq }}$ can be found. From this value, it can be predicted whether the reaction will proceed to the left or right to reach equilibrium.

Trial K_{eq} is also called the reaction quotient, Q .

Remember...
The [reactants] and [products] will shift in order to reach equilibrium.
Comparing trial K_{eq} and actual $\mathrm{K}_{\text {eq }} .$.

1. If trial K_{eq} is greater than actual K_{eq}...

$$
\text { Trial } \mathrm{K}_{\mathrm{eq}}=\frac{[\text { products }]}{[\text { reactants }]}
$$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{[\text { products }]}{[\text { reactants }]}
$$

- More reactant will need to be formed.
- The reaction will shift \qquad eft .

2. If trial K_{eq} is less than actual $\mathrm{K}_{\mathrm{eq}} \ldots$

$$
\text { Trial } \mathrm{K}_{\mathrm{eq}}=\frac{[\text { products }]}{[\text { reactants }]}
$$

$$
\mathrm{K}_{\mathrm{eq}}=\frac{[\text { products }]}{[\text { reactants }]}
$$

- More Product will need to be formed.
- The reaction will shift \qquad night.

Example:
(1) The following gases are introduced into a closed flask: $0.057 \mathrm{M} \mathrm{SO}_{2}, 0.057 \mathrm{M}_{2}$ and $0.12 \mathrm{M} \mathrm{SO}_{3}$. In which direction will the reaction proceed to establish equilibrium?

$$
\begin{aligned}
& 2 \mathrm{So}_{2(\theta)}+-\mathrm{O}_{2_{(\Theta)}} \leq 2 \\
\text { Trial } \mathrm{Ko}_{\mathrm{eq}} & =\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \\
& =\frac{(0.12)^{2}}{(0.057)^{2}(0.057)} \\
& =78
\end{aligned}
$$

$\underset{\mathrm{Keq}_{\text {eq }}}{\text { Trial }}<\begin{gathered}\text { Actual } \\ \mathrm{Keq}^{2}\end{gathered}$
$78<85$
Rx will shift right
(2) The following gases are introduced into a closed 1.50 L flask: $1.5 \mathrm{~mol}^{\text {of }} \mathrm{NO}_{2}$ and $4.0 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$. In which direction will the reaction proceed to achieve equilibrium?

$$
\begin{aligned}
& \text { Trial Keq }=\frac{2}{\left[\mathrm{NO}_{2} \mathrm{O}_{4}\right]} \\
& {\left[\mathrm{NO}_{2}\right]^{2} } \\
&=\frac{(2.667)}{(1)^{2}} \\
&=2.667
\end{aligned}
$$

$$
\mathrm{K}_{\mathrm{eq}}=0.940
$$

Trialkeq > Actual Kea $2.667>0.0940$

Re will shift
LeFT
(3) A mixture contains $0.025 \mathrm{MCH}_{4}, 0.045 \mathrm{M} \mathrm{H}_{2} \mathrm{O}, 0.10 \mathrm{M} \mathrm{CO}$ and $0.30 \mathrm{M}_{2}$. In which direction will the reaction proceed to reach equilibrium?

$$
\begin{aligned}
& \ldots \mathrm{CH}_{4(\mathrm{~g})}+\ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightharpoons \ldots \mathrm{CO}_{(\mathrm{g})}+=\mathrm{H}_{2(\mathrm{~g})} \\
& \mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2(\mathrm{~g})} \quad \mathrm{K}_{\mathrm{eq}}=4.7 \\
& \text { Trial } \mathrm{Keq}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
& =\frac{(0.10)(0.30)^{3}}{(0.025)(0.045)} \\
& =2.4 \\
& \text { Trialkeq < Actual } \mathrm{Keq}_{\mathrm{q}} \\
& 2.4<4.7 \\
& \text { Rx will shift } \\
& \text { RIGHT }
\end{aligned}
$$

(4) At a certain temperature the reaction:

$$
\ldots \mathrm{CO}_{(\mathrm{g})}+\ldots \ldots \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightharpoons \ldots \mathrm{CO}_{2(\mathrm{~g})}+\ldots \ldots \mathrm{H}_{2(\mathrm{~g})}
$$

has a $K_{\text {eq }}=0.400$. Exactly 1.00 mol of each gas was placed in a 100 . L vessel and the mixture was allowed to react. Find the equilibrium concentration of each gas.

Shift left

$$
0.632=\frac{0.01-x}{0.01+x}
$$

Hebden Workbook Pg. 72 \#50-52, 54, 58, 61-66

$$
\begin{gathered}
0.00632+0.632 x=0.01-x x \\
-0.00632+x-0.00632+x
\end{gathered}
$$

$$
\begin{aligned}
& \frac{1.632 x}{1.632}=\frac{0.00368}{1.632} \\
& x=0.00225 \\
& {\left[\mathrm{CO}_{2}\right]=\left[\mathrm{H}_{2}\right]} \\
& =0.01-0.00225 \\
& =0.00775 \mathrm{M} \\
& {[\mathrm{CO}]=\left[\mathrm{H}_{2} \mathrm{O}\right]} \\
& =0.01+0.00225 \\
& =0.0123 \mathrm{M}
\end{aligned}
$$

