Name: Date: Block:

- 1. ICE Tables (cont'd)
- 2. Trial K_{eq}

ICE Tables

Determining Initial Concentrations from Keg and the Equilibrium Concentrations

(1) Some CH_3OH was injected into a flask where it established equilibrium with a [CO]=0.15M. What was the initial concentration of CH_3OH ?

$CH_3OH_{(g)} = H_2(g) + CO_{(g)}$ $K_{eq} = 0.040$										
	CH ₃ OH (g)	\$	<u></u> H _{2 (g)}	+	CO (g)					
I	\sim		OM		01					
С	- 0.15M		+0.30M		+ 0.15M					
Е	x-0.15		0.30M		0.157					

$$Keq = \frac{(0.30)^2 (0.15)}{(x-0.15)} = 0.040$$

$$0.040 x - 0.006 = 0.0135$$

$$+0.006 + 0.006$$

$$0.040 x = 0.0195 x = 0.4875$$

[CH30H]= 0.49M

(2) NiS reacted with O_2 in a 2.0L flask. When equilibrium was achieved, 0.36 mol of SO_2 were found in the flask. What was the original $[O_2]$ in the flask? K_{eq} = 0.30

		=	2 —) 1		
	NiS (s)	+	$\underline{\hspace{1cm}}$ $O_{2 (g)}$	\	$\leq SO_{2 (g)}$	+	$\stackrel{\frown}{\longrightarrow}$ Ni $\phi_{(s)}$
Initial			X		om		
Change			-0.27M		+0.18M		
Equilibrium			x -0.27~		0.18M		

$$Keq = \frac{(0.18)^2}{(x-0.27)^3} = \frac{0.30}{3}$$

$$\frac{0.318797}{x-0.27} = 0.6694$$

$$0.6694x - 0.1867 = 0.318797$$

$$+0.1807 +0.1807$$

$$0.6694x = 0.499535$$

$$y = 0.7462$$

$$[0_2] = 0.75M$$

$$x - 2y = 0.60$$

 $x - 2(0.3) = 0.60$
 $x - 0.6 = 0.6$
 $x = 1.2$

 $K_{eq} = 0.25$

(4) Some SO_2 and O_2 are injected into a flask. At equilibrium, the $[SO_2] = 0.050$ M and the $[O_2] = 0.040$ M. What was the initial $[O_2]$?

$$\begin{array}{c}
(-2y - y) \\
(-2y)^2 \\
(0.050)^2 (0.040) \\
\hline
0.01 = 52y^2 \\
0.1 = 2y \\
0.05 = y
\end{array}$$

$$X-y=0.040$$

 $X-0.05=0.040$
 $X=0.09$

 $K_{eq} = 100.$

$$[O_Z] = \chi = 0.090$$

Trial Kea

With any given values of the concentration of product or reactant, a trial K_{eq} can be found. From this value, it can be predicted whether the reaction will proceed to the left or right to reach equilibrium.

Trial K_{eq} is also called the reaction quotient, Q.

Trial
$$K_{eq} = \frac{[products]}{[reactants]}$$
 @ any time

Remember...

The [reactants] and [products] will shift in order to reach equilibrium.

Comparing trial K_{eq} and actual K_{eq}...

1. If trial K_{eq} is greater than actual K_{eq}...

Trial
$$K_{eq} = \frac{[products]}{[reactants]}$$

$$K_{eq} = \frac{[products]}{[reactants]}$$

- More reactant will need to be formed.
- The reaction will shift

2. If trial K_{eq} is less than actual K_{eq}...

Trial
$$K_{eq} = \frac{[products]}{[reactants]}$$

$$K_{eq} = \frac{[products]}{[reactants]}$$

- More <u>product</u> will need to be formed.

 The reaction will shift <u>right</u>.

Example:

(1) The following gases are introduced into a closed flask: 0.057M SO₂, 0.057M O₂ and 0.12M SO₃. In which direction will the reaction proceed to establish equilibrium?

$$= \frac{(2.667)}{(1)^2}$$
=\frac{(2.667)}{(1)^2}
\frac{\left}{\left} \frac{\left}{\left}

(3) A mixture contains 0.025M CH₄, 0.045M H₂O, 0.10M CO and 0.30M H₂. In which direction will the reaction proceed to reach equilibrium?

That Keq =
$$\frac{\text{CH}_{4(g)} + \text{H}_{2}\text{O}_{(g)} + \text{CO}_{(g)} + \text{H}_{2(g)}}{\text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{H}_{2(g)}}$$

That Keq = $\frac{\text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{H}_{2(g)}}{\text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)}}$

That Keq < Actual Keq < Actual Keq < 4.7

= $\frac{\text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)}}{\text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)}}$

= $\frac{\text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)}}{\text{CO}_{2(g)} + \text{CO}_{2(g)}}$

That Keq < 4.7

= $\frac{\text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)}}{\text{CO}_{2(g)} + \text{CO}_{2(g)}}$

= $\frac{\text{CO}_{2(g)} + \text{CO}_{2(g)} + \text{CO}_{2(g)}}{\text{CO}_{2(g)} + \text{CO}_{2(g)}}$

= $\frac{\text{CO}_{2(g)} + \text{CO}_{2(g)}}{\text{CO}_{2(g)}}$

= $\frac{\text{CO}_{2(g)} + \text{CO}_{2(g)}$

(4) At a certain temperature the reaction:

$$CO_{(g)} + M_2O_{(g)} = CO_{2(g)} + H_{2(g)}$$

has a K_{eq} = 0.400. Exactly 1.00 mol of each gas was placed in a 100. L vessel and the mixture was allowed to react. Find the equilibrium concentration of each gas.

0.00632 + 0.632x = 0.0

$$0.00632 + 0.632x = 0.01 - x$$

-0.00632 +x -0.00632 +x

$$\frac{1.632 \times = 0.00368}{1.632}$$

$$x = 0.00225$$

$$[CO_2] = [H_2]$$

= 0.01-0.00225
= 0.00775M

$$[CO] = [H_{2}O]$$

= 0.01 + 0.00225
= 0.0123 M